

	The second residence of the second se	
Side: M	OUND ST. PCB	
	00000093682	
Break:_	1.5	
Other		
\		

SITE INSPECTION WORKSHEET

CERCLIS IDENTIFICATION NUMBER MO0000093682

			MO0000093682										
	SITE LOCATION SITE NAME: LEGAL, COMMON, OR DESCRIPTIVE NAME OF SITE												
		OR DESCRIPTIVE NAME OF the Laclede Coal Gas Si)									
North on Broad exit off Interstat the Apex Oil fac	way from Broad te 70, to Mullan cility on the left.	PECIFIC LOCATION IDEN way Street exit off Interpoly Street, turn east on I Take the gravel roadway, and the Petroleum, I	state 64 or south of Mullanphy then to ay north to Moun	irn left onto a gr d Street. The si	ravel roadway just past ite is encompassed by								
CITY St. Louis			STATE MO	ZIP CODE 63102	TELEPHONE N/A								
	LATITUDE & LOI Lat., 90° 10' 5		TOWNSHIP, RAI T45N, R7E, Se	NGE, AND SECTI	ON								
		OWNER/OPERATO	R IDENTIFICAT	TION									
OWNER McKinley Iron	(Contact: Herma	n Gellman)	OPERATOR McKinley Iron	(Contact: Herm	an Gellman)								
OWNER ADDRES 3620 North Hal			OPERATOR ADDRESS 3620 North Hall Street										
CITY St. Louis			CITY St. Louis										
STATE MO	ZIP CODE 63147	TELEPHONE (314) 231-6077	STATE MO	ZIP CODE 63147	TELEPHONE (314) 231-6077								
		SITE EVA	LUATION										
AGENCY/ORGAN Sverdrup Corpo			EPA REGION VII										
INVESTIGATOR Michael W. Mc	Curdy, CHMM												
CONTACT Michael W. Mc	Curdy, CHMM		EPA CONTACT Dr. Pete Culve	r, PE									
ADDRESS 4400 College Bi	lvd., Suite 160		ADDRESS 726 Minnesota	Avenue									
CITY Overland Park			CITY Kansas City										
STATE KS	ZIP CODE 66211	TELEPHONE (913) 663-2101	STATE KS	ZIP CODE 66101	TELEPHONE (913) 551-7707								

GENERAL INFORMATION

Site Description and Operational History: Provide a brief description of the site and its operational history. State the site name, owner, operator, type of facility and operations, size of property, active or inactive status, and years of waste generation. Summarize waste treatment, storage, and disposal activities that have or may have occurred at the site; note whether these activities are documented or alleged. Identify all source types and prior spills, floods, or fires. Summarize highlights of the PA and other investigations. Cite references.

The Mound Street PCB Site is part of the Laclede Coal Gas Site (MOD981715980). The Laclede Coal Gas Site also includes the PFT-Apex Oil facility located west and south of the Mound Street PCB Site. The total area of the Mound Street PCB Site is estimated at approximately 1.5 acres (References 15 and 22). The buildings on the site were demolished in 1991, and the property currently has no structures upon it. The property is owned by McKinley Iron, Inc. located at 3620 North Hall Street, St. Louis, Missouri. Mr Gellman was interviewed during the site reconnaissance. He did not know if the basement walls and floor were removed during building demolition. He did state that the basement area was probably filled with demolition debris. He was not aware of any unusual observations made, such as stained soil or odors, during the building demolition. He estimated the basement depth to be between 12 and 14 feet. Mr. Gellman stated the property was originally purchased from Union Electric to salvage power plant equipment. The site is roughly rectangular in shape and is bordered on three sides by industrial property. Gravel roads are located along the property perimeter, with Mound Street being the northern boundary. An east-west dirt path has been made across the property. No fencing or other barrier exists around the property. Bricks, rock, wood, metal, brush, and concrete debris are located on the southern portion of the property. Several small soil piles were observed along the southeastern edge of the property. Two 55-gallon drums were also observed adjacent to the debris. The contents of the drums are unknown. The northern portion is overgrown with grass and weeds and other vegetation. The general surface runoff is toward the east and south. To the east is vacant property with railroad tracks, the concrete flood wall, and then the Mississippi River (Reference 22).

The St. Louis Metropolitan Sewer District (MSD), Brooklyn Street pump station is located approximately 575 feet north-northeast of the site. The pump station is located on the west side of the flood wall. Two wells sampled in 1991 by E&E/FIT and three manholes sampled by MSD in 1993 were identified. An abandoned pump house, once part of the Mound Street Power Plant, is located on the east side of the flood wall. The abandoned pump house is in poor condition. At the time of the site reconnaissance visit, the water level of the Mississippi River was at the bottom of the pump house. The abandoned pump house was deeded to the City of St. Louis for the construction of a bike path along the river (Reference 22).

The site is part of the Laclede Gas and Light Company former manufactured gas plant (FMGP), which operated in the late 1800s to the mid-1940s. Laclede Gas used a retort process for coal carbonization in the generation of gas. Approximately 930 million gallons of coal tar waste were produced at this facility. It is estimated that approximately 76 percent of the waste was sold, with the remaining 24 percent being buried on-site (Reference 4). This equates to approximately 224 million gallons of coal tar waste potentially buried at the site. On-site burial was typically conducted in unlined pits. In 1940, operations were split between Laclede Gas Light Company (Laclede Gas) and Laclede Power and Light Company (Laclede Electric) (References 3 and 4). In 1945, Union Electric (UE) purchased the entire coal gas facility and operated the Mound Street Power Plant from 1945 to 1973. UE did not manufacture coal gas at this site. In 1969, the Apex Oil Company purchased the former coal gas works (Laclede Gas) from UE. UE, however, continued to operate its electrical facility from the former Laclede Electric works. The Apex Oil Company utilized the site as a tank farm for the storage of petroleum fuels until the mid-1980s, when it became an asphalt product terminal (References 3 and 4). The PFT-Apex Oil facility is currently still operating at this location. In 1973, the UE property (Laclede Electric works) was transferred to the Tenlis Company. Tenlis dismantled the power generation and transmission equipment. Transformer oil was reportedly disposed by Midwest Oil Company. The dismantled equipment was sold as scrap metal (Reference 4). In 1981, Tenlis transferred the property to AZCON (Reference 3). The operations of AZCON are unknown; however, it was reported in the MDNR PA report that AZCON could have been a metal recycling company (Reference 15). In 1985, Mound Street Corporation became the property owner and leased the building to an individual for an electric motor stripping operation (Reference 3). An oil fire occurred in the basement of the building in 1989, and the building was demolished in the spring of 1991 (Reference 15). McKinley Iron became the owner of the property in 1993 (Reference 15). The property does not have any buildings or other structures, and is currently vacant (References 7 and 22).

References: 3, 4, 7, 15, 22

The Mound Street PCB Site has had numerous investigations conducted since 1976.

- The U.S. Coast Guard investigated oil slicks in the Mississippi River, in the vicinity of the Mound Street PCB Site, three times between 1976 to 1987. The oil slicks were reportedly originating from the Mound Street Power Plant. The basement of the Mound Street Power Plant was the suspected source of oil; however, no specific source was identified. No samples were collected during any of the Coast Guard investigations (References 3 and 4).
- The St. Louis City Division of Health conducted an investigation of the Mound Street Power Plant on April 8, 1987. Six oil samples were collected from the basement of the Mound Street building and analyzed for PCBs. No PCB contamination was identified; however, detection limits were not recorded (References 3 and 4).
- The The Ecology and Environment/Field Investigation Team (E&E/FIT) submitted a PA report of the Mound Street Power Plant Site on June 23, 1988 (Reference 4). The field activities were conducted on September 17, 1987. Six oil, water and oil/water mixture samples were collected from the Mound Street building basement and two from manholes in Mound Street during the PA site reconnaissance. The samples were analyzed for PCBs. No PCB contamination was detected at a 1 mg/kg detection limit in any of the samples. The source of oil in the basement of the Mound Street Power Plant building (Mound Street PCB Site) was potentially identified as the adjacent PFT-Apex Oil terminal. It was stated in the report that PFT-Apex Oil had numerous spills, some of which entered the Mound Street building basement. Transformers and hydraulic oil tanks, located in the Mound Street building basement, were supposedly drained and removed in the 1970s; however, no records confirming the proper disposal of oil were available.
- The E&E/FIT conducted a site reconnaissance of the Laclede Gas and Light FMGP on November 20, 1990 for the preparation of the SSI work plan. Seepage was observed emanating from the foundation and piping system of an abandoned pump house, formerly part of the Mound Street Power Plant. The pipes were reportedly plugged with concrete; however, seepage was leaching through the concrete. The pump house is located on the eastern side of the flood wall, therefore, the seepage was going directly into the Mississippi River. No samples were collected and no description of the seepage material was made during the site reconnaissance (Reference 3).
- The E&E/FIT submitted an SSI report on the Laclede Gas and Light FMGP Site on October 29, 1991 (Reference 3). Field activities for the SSI occurred March 3-9, 1991. Subsurface soil, surface soil, sediment, surface water and groundwater samples were collected on and around the PFT-Apex Oil property. No samples were collected from the basement of the Mound Street Power Plant Building (Mound Street PCB Site), as originally planned, since the building was being demolished at the time of the SSI field activities. Numerous samples were collected in the vicinity of the Mound Street PCB Site. Only these sample results will be discussed below. Five borehole screening locations, four surface soil sample locations, three groundwater sample locations, three surface water sample locations, and three sediment sample locations are in the vicinity of the Mound Street PCB Site. Screening results indicated the presence of benzene, toluene, xylene and PAHs in the surface and subsurface soil in the vicinity of the Mound Street PCB Site (borings B01, B02, B03, B17 and B18). Boring B23 was utilized as a background location, and the results showed nondetect for volatiles, metals, and semivolatiles. Screening values for surface water samples were nondetect for the same parameters. Screening analysis of sediment samples indicated the presence of xylene and PAHs. Surface soil samples submitted for CLP analysis were collected from the 0 - 2 foot interval. Samples were analyzed for semivolatiles, total metals and cyanide. Cyanide and PAHs were detected above the background detection limits. Metal concentrations were negligible when compared to background levels. Sediment samples submitted for CLP analysis were analyzed for total petroleum hydrocarbons, volatiles, semivolatiles, cyanide and total metals. The extreme upgradient sample (Sample 402) exhibited the highest concentrations; however results are comparable between sediment sample locations. No background sediment sample was collected.

Five groundwater samples were collected (Sample 201, 202, 203, 204 and 206) and analyzed for volatiles, semivolatiles, cyanide and total metals. Groundwater sample analysis showed 65 ug/L acenapthalene, 25 ug/L fluorene, 46 ug/L phenanthene, 93 ug/L benzene and 1600 ug/L cyanide in Well 204. Well 203 sample analysis did not show any contamination except for 590 ug/L cyanide. Both cyanide results are "J" coded, the value is reported but not valid under approved QC procedures. Well 206 (background) did not show any contamination above detection limits.

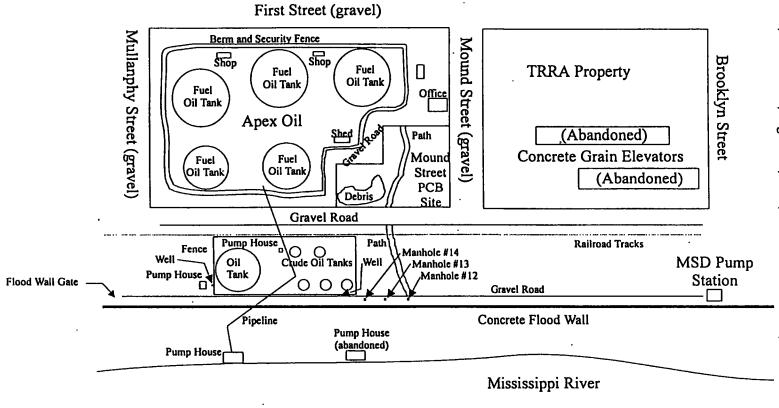
Arsenic, barium, copper, chromium, nickel, selenium, vanadium, and zinc were not detected in four surface water samples (Sample 301, 302, 303 and 304), except as indicated. Surface water sample analysis showed lead levels at 7.0 ug/L for 301, 7.2ug/L for 301D, 9.7 ug/L for 302, <24 ug/L for 303, 18 ug/L for 304, and 15ug/L for 304D. Sample location 303 also showed barium at 280 ug/L, vanadium at 62 ug/L, zinc at <89 ug/L and an invalid selenium result of 11 ug/L. Sample location 304 and 304D showed chromium at 14 ug/L and 12 ug/L, respectively. Sample location 304 also had a result of 54 ug/L for zinc. Sample 304 was collected from the Illinois-American Water Company surface intake located across the Mississippi River from the site. Sample locations are shown in Figure 6. Surface water samples were analyzed for total petroleum hydrocarbons, volatiles, semivolatiles, cyanide and total metals. None of the samples collected during the Laclede Coal Gas SSI were analyzed for PCBs.

In the E&E/FIT SSI report, it is stated that a mixed source is present since BETX compounds "are not considered abundant in coal tar." The PAHs and cyanide were attributed to the former coal gas operations. It was also stated that some PAH contamination may be attributed to the adjacent PFT-Apex Facility, which stores oil and asphalt.

On July 8, 1993 St. Louis MSD personnel discovered oil seeping into the Brooklyn Street storm water pump station, located at the eastern end of Brooklyn Street and approximately 400 feet north of the Mound Street PCB Site (Reference 7). This pump station is only operational during heavy precipitation or if the Mississippi River level is above flood stage. In July, 1993, the Mississippi River was above flood stage. A waste oil sample from the pump station wet well was collected and analyzed for PCBs by the MSD. A PCB concentration of 47 mg/L was detected (Reference 12). The possible source was identified as an underground storage tank (UST) on the adjacent property (Reference 19). On August 9, 1993, waste oil samples from three manholes located along the flood wall were collected and analyzed for PCBs by the MSD. These three manholes are part of the underdrain system for the flood wall and are not part of the storm sewer system. The concentrations of PCBs were 25.4 mg/L in Manhole F-GA1 (#12), 11.7 mg/L in Manhole F-GA1 (#13), 36.6 mg/L in Manhole F-GA1 (#14) (Reference 13). Five 55-gallon drums of waste oil were pumped out of the storm sewer by REACT Environmental Engineers and disposed of by Tipton Environmental Services (References 5 and 7). In the conclusion of the Special Problem Investigation report completed by MSD, it is stated the UST appears to be the source of the oil in the pump station. It is further stated that ground saturation of oil from an old Union Electric facility is another possibility (Reference 19).

A 12,000-gallon UST (10.5 foot diameter by 18.5 feet long) containing petroleum products was discovered during an investigation to identify the potential source of the PCBs in the pump station (Reference 9). The UST was located on Terminal Railroad Association (TRRA) property, southwest of the Brooklyn Street pump station. The TRRA property is located on the north side of Mound Street, directly across from the Mound Street PCB Site. A sample was collected from the UST on July 14, 1993 by MSD. Sample analysis showed PCBs in the UST at 39 mg/L (Reference 12). The existence of the UST was unknown to TRRA prior to notification by the St. Louis Fire Marshall. The tank contents were removed on August 4, 1993 by Environmental Operations, under supervision by GEHM Corporation. Sixteen 55-gallon drums of sludge/liquid were removed from the UST. Sample analysis of the tank contents showed PCBs at less than 10 mg/kg (Reference 9). Analysis of soil samples collected from the UST excavation showed PCBs at less than 0.05 mg/kg (Reference 10). Approximately 30 cubic yards of soil were removed during excavation of a 16 foot wide, 25 foot long and 12 foot deep UST pit. It is estimated that less than 50 gallons of water was in the UST pit after excavation activities (Reference 10); however, no sample of the water was collected. On August 17, 1993 EnTech Engineering, under supervision by GEHM Corporation, conducted an Infrared Thermograph (IR/T) survey of the TRRA Site. No evidence of a leak plume was identified during this study. An anomaly was discovered, approximately 10 foot square, on the Mound Street PCB property. Boreholes were attempted at the location of the anomaly; however, they were abandoned after auger refusal at a depth of 5 feet due to encountering solid rock debris (Reference 9). The foundation or basement of the demolished Mound Street Site buildings could explain the presence of the IR/T anomaly (Reference 7).

A letter from Randel Lewis, Terminal Manager for the Petroleum Fuel and Terminal Facility, to Charles Gay, St. Louis City Fire Inspector, was written in response to a September 8, 1993 telephone conversation (Reference 11). In the letter, Mr. Lewis stated that a leak in a 6-inch pipeline was discovered at the facility. Repairs to the pipeline were made with approximately 2.5 barrels of oil/soil being disposed of. It is further stated that the pipeline was taken out-of-service. The letter does not indicate where the pipeline was located.


• The Missouri Department of Natural Resources (MDNR) submitted a PA report on the Mound Street PCB Site on March 21, 1994 (Reference 15). Field activities for the PA occurred on November 11, 1993. No samples were collected during the PA. The conclusions of the PA report indicate that a threat from the groundwater pathway is very unlikely, a release to the Mississippi River appears likely, an exposure through the soil pathway is low and an exposure through the air pathway is also low.

No further incidences of oil in the Brooklyn Street pump station or manholes along the flood wall have occurred since the 1993 spill (Reference 6).

References: 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 19,

GENERAL INFORMATION (continued)

Site Sketch: Provide a sketch of the site. Indicate all pertinent features of the site and nearby environments including sources of waste, areas of visible and buried wastes, buildings, residences, access roads, parking areas, fences, fields, drainage patterns, water bodies, vegetation, wells, sensitive environments, and other features

GENERAL INFORMATION (continued)

Source Description: Describe all sources at the site. Identify source type and relate to waste disposal operations. Provide source dimensions and the best available waste quantity information. Describe the condition of sources and all containment structures. Cite references.

SOURCE TYPES

Landfill: A man-made (by excavating or construction) or natural hole in the ground into which wastes have come to be disposed by backfilling, or by contemporaneous soil deposition with waste disposal.

Surface Impoundment: A natural topographic depression, man-made excavation, or dike area, primarily formed from earthen materials (lined or unlined) and designed to hold an accumulation of liquid wastes, wastes containing free liquid, or sludge nor backfilled or otherwise covered; depression may be wet with exposed liquid or dry if deposited liquid has evaporated, volatilized, or leached; structures that may be described as lagoon, pond, tailings pond, sludge pit; also a surface impoundment that has been covered with soil after the final deposition of waste materials (i.e., buried or backfilled).

Drum: A portable container designed to hold a standard 55-gallon volume of waste.

Tank and Non-Drum Containers: Any device, other than a drum, designed to contain an accumulation of waste that provides structural support and is constructed primarily of fabricated materials (such as wood, concrete, steel, or plastic); any portable or mobile device in which waste is stored or otherwise handled.

Contaminated Soil: An area or volume of soil onto which hazardous substances have been spilled, spread, disposed, or deposited.

Pile: Any non-containerized accumulation above the ground surface of solid, non-flowing waste; includes open drums. Some types of waste piles are:

• Chemical Waste Pile:

A pile consisting primarily of discarded chemical products, by-products, radioactive wastes, or used or unused feedstocks.

• Scrap Metal or Junk Pile A pile consisting of scrap metal or discarded durable goods (such as

appliances, automobiles, auto parts, batteries, etc.) composed of

materials containing hazardous substances.

Tailing Pile: A pile consisting primarily of any combination of overburden from a

mining operation and tailings from a mineral mining, beneficiation, or

processing operation.

Trash Pile
 A pile consisting primarily of paper, garbage, or discarded non-durable

goods containing hazardous substances.

Land Treatment: Landfarming or other method of waste management in which liquid wastes or sludges are spread over land and tilled, or liquids are injected at shallow depths into soil.

Other: Sources not in categories listed above.

GENERAL INFORMATION (continued)

Source Description: Include description of containment per pathway for groundwater (see HRS Table 3-2), surface water (see HRS Table 4-2), and air (see HRS Tables 6-3 and 6-9).

The contaminants of concern at the Mound Street PCB Site originate from at least two separate sources; 1) coal gas operations, and 2) electrical power generation and transmission operations. The former is a source for coal tar wastes and spent oxides, while the latter is a potential source for PCBs. Coal tar wastes include polynuclear aromatic hydrocarbons (PAHs) and phenolic compounds resulting from combustion processes, and spent iron oxides resulting from gas purification processes. Benzene, ethylbenzene, toluene and xylene are possible constituents of coal tar wastes. Iron oxides may contain sulphur, cyanide and small quantities of coal tar. PCBs are found in transformer and hydraulic oil. It is estimated that approximately 223,680,000 gallons of coal tar wastes may be buried on the former Laclede Coal Gas Site, which includes the Mound Street PCB Site (Reference 3). The quantity, if any, of PCB contaminated oil in the subsurface is not known.

No confining layer is known to exist between the alluvium and bedrock. Also, no aquifer discontinuity exists within the 4-mile target distance limit (Reference 20). Based on Geoprobe borings conducted during the April, 1996, field activities, the location of the former Mound Street Building is underlain by rock, concrete, bricks and other debris. On the vacant property east of the site, native silt material was encountered to a depth of 27 feet (Reference 24). The depth to bedrock is estimated to be from 20 to 30 feet (Reference 3). The shallowest aquitard in the area is the Maquoketa Shale at the top of the Ordovician System (Reference 20). The depth to groundwater is generally approximately two feet above the Mississippi River and is estimated at 20 feet (Reference 3). Groundwater movement is toward the river, to the east and southeast of the site (References 20 and 21). The groundwater depth was measured at 25 feet below the ground surface during the field activities for this SSI.

The site is essentially flat, with a gentle slope to the east and south. A 500-year concrete flood wall was constructed by the Corps of Engineers and separates the site from the Mississippi River (Reference 22). The runoff from the site is collected in the storm sewer. The storm sewer is connected to the sanitary sewer system, with the wastewater flowing to the Bissle Point Treatment Plant located approximately 2.5 miles upstream (Reference 3).

The site has no structures, fencing, or other obstructions prohibiting access to the site.

References: 3, 20, 21, 22, 24

Hazardous Waste Quantity (HWQ) Calculation: SI Tables 1 and 2 (see HRS Tables 2-5, 2-6, and 5-2).

Single-source for Coal Tar Waste:

Coal Tar Waste potentially disposed of on-site = 223,680,000 gallons

From SI Table 1, Tier C-Volume, HWQ = 10,000 for Coal Tar Wastes

Single-source for PCB waste:

The quantity of PCB wastes is unknown. Therefore, for an unallocated source, based on Section 2.4.2.2 of the Federal Register dated December 14, 1990 and SI Table 1, The HWQ is assigned a default value of 10 for PCB wastes.

Single-source for Oil waste:

The quantity of PCB wastes is unknown. Therefore, for an unallocated source, based on Section 2.4.2.2 of the Federal Register dated December 14, 1990 and SI Table 1, The HWQ is assigned a default value of 10 for oil wastes.

Total Site Waste Quantity is 10,000 (Coal Tar) + 10 (PCB) + 10 (Oil) = 10,020

From SI Table 2, for Total Site WQ of 10,020, the HWQ is 10,000.

Attach additional pages, if necessary

HWQ = 10.000

References: 3

SI TABLE 1: HAZARDOUS WASTE QUANTITY (HWQ) SCORES FOR SINGLE SOURCE SITES AND FORMULAS FOR MULTIPLE SOURCE SITES

			le Source Sites ed HWQ scores)
(Column 1) TIER	(Column 2) Source Type	(Column 3) HWQ = 10	(Column 4) HWQ = 100
A Hazardous Constituent Quantity	N/A	HWQ = 1 if Hazardous Constituent Quantity data are complete HWQ = 10 if Hazardous Constituent Quantity data are not complete	>100 to 10,000 lbs
B Hazardous Wastestream Quantity	N/A	≤ 500,000 lbs	>500,000 to 50 million lbs
	Landfill	≤ 6.75 million ft³ ≤ 250,000 yd³	> 6.75 million to 675 million ft ³ > 250,000 to 25 million yd ³
	Surface Impoundment	≤ 6,750 ft³ ≤ 250 yd³	> 6,750 to 675,000 ft ³ > 250 to 25,000 yd ³
	Drums	≤ 1,000 drums	> 1,000 to 100,000 drums
C Volume	Tanks and Non-drum Containers	≤ 50,000 gallons	> 50,000 to 5 million gallons
	Contaminated Soil	≤ 6.75 million ft ³ ≤ 250,000 yd ³	> 6.75 million to 675 million ft ³ > 250,000 to 25 million yd ³
	Pile	≤ 6,750 ft³ ≤ 250 yd³	> 6,750 to 675,000 ft ³ > 250 to 25,000 yd ³
	Other	≤ 6,750 ft ³ ≤ 250 yd ³	> 6,750 to 675,000 ft ³ > 250 to 25,000 yd ³
	Landfill	≤ 340,000 ft ² ≤ 7.8 acres	> 340,000 to 34 million ft ² > 7.8 to 780 acres
	Surface Impoundment	≤ 1,300 ft ² ≤ 0.029 acres	> 1,300 to 130,000 ft ² > 0.029 to 2.9 acres
D Area	Contaminated Soil	≤ 3.4 million ft² ≤ 78 acres	> 3.4 million to 340 million ft ² > 78 to 7,800 acres
	Pile	≤ 1,300 ft ² ≤ 0.029 acres	> 1,300 to 130,000 ft ² > 0.029 to 2.9 acres
	Land Treatment	≤ 27,000 ft ² ≤ 0.62 acres	> 27,000 to 2.7 million ft ² > 0.62 to 62 acres

I TABLE 1 (CONTINUED)

Single Source (assigned HWQ		Multiple Source Sites		
(Column 5) HWQ = 10,000	(Column 6) HWQ = 1,000,000	(Column 7) Divisors for Assigning Source WQ Value	(Column 2) Source Type	(Column 1) TIER
> 10,000 to 1 million lbs	> 1 million lbs	lbs ÷ 1	N/A	A Hazardous Constituent Quantity
> 50 million to 5 billion lbs	> 5 billion lbs	lbs ÷ 5,000	N/A	B Hazardous Wastestream Quantity
> 675 million to 67.5 billion ft ³ > 25 million to 2.5 billion yd ³	> 67.5 billion ft ³ > 2.5 billion yd ³	$ft^3 \div 67,500$ yd ³ ÷ 2,500	Landfill	
> 675,000 to 67.5 million ft ³ > 25,000 to 2.5 million yd ³	> 67.5 million ft ³ > 2.5 million yd ³	$ft^3 \div 67.5$ yd ³ ÷ 2.5	Surface Impoundment	
> 100,000 to 10 million drums	> 10 million drums	drums ÷ 10	Drums	
> 5 million to 500 million gal.	> 500 million gal.	gallons ÷ 500	Tanks and Non- drum containers	C Volume
> 675 million to 67.5 million ft ³ > 25 million to 2.5 billion yd ³	> 67.5 billion ft ³ > 2.5 billion yd ³	ft ³ ÷ 67,500 yd ³ ÷ 2,500	Contaminated Soil	
> 675,000 to 67.5 million ft ³ > 25,000 to 2.5 million yd ³	> 67.5 million ft ³ > 2.5 million yd ³	$ft^3 \div 67.5$ yd ³ ÷ 2.5	Pile	
> 675,000 to 67.5 million yd³ > 25,000 to 2.5 million yd³	> 67.5 million ft ³ > 2.5 million yd ³	$ft^3 \div 67.5$ yd ³ ÷ 2.5	Other	
> 34 million to 3.4 billion R ² > 780 to 78,000 acres	> 3.4 billion ft ² > 78,000 acres	ft² ÷ 3,400 acres ÷ 0.078	Landfill	
> 130,000 to 13 million ft ² > 2.9 to 290 acres	> 13 million ft ² > 290 acres	$ft^2 - 13$ acres ÷ 0.00029	Surface Impoundment	
> 340 million to 34 billion ft ² > 7,800 to 780,000 acres	> 34 billion ft ² > 780,000 acres	ft ² ÷ 34,000 acres ÷ 0.78	Contaminated Soil	D Area
> 130,000 to 13 million ft ² > 2.9 to 290 acres	> 13 million ft ² > 290 acres	ft ² ÷ 13 acres ÷ 0.00029	Pile	
> 2.7 million to 270 million ft ² > 62 to 6,200 acres	> 270 million ft ² > 6,200 acres	ft ² ÷ 270 acres ÷ 0.0062	Land Treatment	

HAZARDOUS WASTE QUANTITY (HWQ) CALCULATION

For each migration pathway, evaluate HWQ associated with sources that are available (i.e., incompletely contained) to migrate to that pathway. (Note: If Actual Contamination Targets exist for groundwater, surface water, or air migration pathways, assign the calculated HWQ score or 100, whichever is greater, as the HWQ score for that pathway). For each source, evaluate HWQ for one or more of the four tiers (SI Table 1, HRS Table 2-5) for which data exist: constituent quantity, wastestream quantity, source volume, and source area. Select the tier that gives the highest value as the source HWQ. Select the source volume HWQ rather than source area HWQ if data for both tiers are available.

Column 1 of SI table 1 indicates the quantity tier. Column 2 lists source types for the four tires. Columns 3, 4, 5, and 6 provide ranges of waste amount for sites with only one source, corresponding to HWQ scores at the tops of the columns. Column 7 provides formulas to obtain source waste quantity values at sites with multiple sources.

- 1. Identify each source type.
- 2. Examine all waste quantity data available for each source. Record constituent quantity and wastestream mass or volume. Record dimensions of each source.
- 3. Convert source measurements to appropriate units for each tier to be evaluated.
- 4. For each source, use the formulas in the last column of SI Table 1 to determine the waste quantity value for each tier that can be evaluated. Use the waste quantity value obtained from the highest tier as the quantity value for the source.
- 5. Sum the values assigned to each source to determine the total site waste quantity.
- 6. Assign HWQ score from SI Table 2 (HRS Table 2-6).

Note these exceptions to evaluate soil exposure pathway HWQ (see HRS Table 5-2):

- The divisor for the area (square feet) of a landfill is 34,000.
- The divisor for the area (square feet) of a pile is 34.
- Wet surface impoundments and tanks and non-drum containers are the only sources for which volume measurements are evaluated for the soil exposure pathway.

SI TABLE 2: HWO SCORES FOR SITES

Site WQ Total	HWQ Score
0	0
1ª to 100	1 ^b .
> 100 to 10,000	100
>10,000 to 1 million	10,000
> 1 million	1,000,000

- If the WQ total is between 0 and 1, round it to 1.
- If the hazardous constituent quantity data are not complete, assign the score of 10.

SI TABLE 3: WASTE CHARACTERIZATION WORKSHEET

3. Unallocated Oil source

Site Name:	Mound Street PCB Site	References:	3, 29, 31, 32, 34	_
Potential Sources:	1. Unallocated PCB source			_
	2 Coal Tar Waste			

			GROUNDWATER SURFACE WATER PATHWAY PATHWAY														
			PATH	WAY			0	VERLAND/F	LOOD MIGRAT	ION				GROUND	WATER TO SURF	ACE WATER	
		(Col I)	(Col 2)	(Col 3)	(Col 4)	(Cal 5)	(Col 6)	(Col 7)	(Col 8)	(Col 9)	(Col 10)	(Col 11)	(Col 12)	(Col 13)	(Col 14)	(Col 15)	(Col 16)
SOURCE	HAZARDOUS SUBSTANCE	Toxicity	GW Mobility HRS Table 3-8	Tox/Mob Value HRS Table 3-9	Per HRS Table 4-10 & 4- 11	Tox/Per Value HRS Table 4-12	Broacc "Food Chain" HRS Table 4-15	Tox/Pers /Bioacc	Ecotox HRS Table 4-19	Ecosox/Pers HRS Table 4-20	Eco Bioace "Environ"	Ecotox/Pers/ Bioacc Value HRS Table 4-21	Tox/Mob/ Pers Value HRS Table 4-26	Tox/Mob/ Pers/Bioac Value HRS Table 4-28	Ecotov/Mob Value	Ecotox/Mob/ Pers Value HRS Table 4-29	Ecotox/Mob/ Pers/Bioacc Value HIRS Table 4-30
			or SCDM*	(C1xC2)	or (SCDM)	(C1xC4)	or (SCDM)	(C5xC6)	or (SCDM)	(C4xCB)	or (SCDM)	(C9xC10)	(C3xC4)	(C6xC12)	(C2xC8)	(C4xC14)	(C10xC15)
ı	РСВ	10,000	1	10,000	1	10,000	50,000	5 x E8	10,000	10,000	50,000	S x E8	10,000	5 x E8	10,000	10,000	5 x E8
2,3	benzene	100	ı	100	0.4	40	5,000	2 E5	100	40	500	20,000	40	2 E5	100	40	20,000
2,3	toluene	10	ı	10	04	4	50	200	100	40	50	2,000	4	200	100	40	2,000
2,3	ethylbenzene	10	1	10	0.4	4	50	200	100	40	50	2,000	4	200	100	40	2,000
2,3	xylene	10	1	10	0 4	4	50	200	100	40	50	2,000	4	200	100	40	2,000
2	fluoranthene	100	ı	100	ı	100	5,000	5 E5	10,000	10,000	500	5 E6	100	5 E6	10,000	10,000	5 E6
2	pyrene	100	ı	100	l l	100	50	5,000	10,000	10,000	50	5 E5	100	5,000	10,000	10,000	5 E5
2	naphthalene	100	ı	100	0 4	40	500	20,000	1,000	400	500	2 E5	100	50,000	1,000	400	2 E5
2	benzo(k)fluor anthene	100	l _	100	1	100	50,000	5 E6	••	••	50,000		100	5 E6	••	••	••
2	benzo(a)pyrene	10,000	ı	10,000	1	10,000	50,000	5 E8	10,000	10,000	50,000	5 E8	10,000	5 E8	10,000	10,000	5 E8
2	benzo(b)fluor anthene	10,000	l	10,000	1	10,000	50,000	5 E8	••	••	50,000	••	10,000	5 E8	••	••	
2	benzo(a)anthra cene	10,000	1	10,000	1	10,000	50,000	5 E8	10,000	10,000	50,000	5 E8	10,000	5 E8	10,000	10,000	5 E8
2	chrysene	10	1	10	I	10	500	5,000	1,000	1,000	5,000	5 E7	10	5,000	1,000	1,000	5 E7
2	anthracene	10	1	10	ı	10	0.5	5	100	100	0.5	50	10	5	100	100	50
2	ideno(123-cd) pyrene	1,000	l	1,000	1	1,000	50,000	5 E7	••	**	50,000	••	1,000	5 E7	••	••	
2	phenanthrene	••	ı	••	1	••	50		10,000	10,000	5,000	5 E8	••	••	10,000	10,000	5 E8
2	acenaphthalene	••	ı	••	0 4	••	50	••		••	50		••	••	••	••	••
2	benzo(ghi)pery lene	••	1	••	ı		50,000		••	••	50,000	••	••			••	••

			GROUND							SUR	FACE WATER	PATHWAY						
			rain	WAT		OVERLAND/FLOOD MIGRATION							GROUNDWATER TO SURFACE WATER					
		(Col 1)	(Col 2)	(Col 3)	(Col 4)	(Col 5)	(Col 6)	(Col 7)	(Col 8)	(Col 9)	(Col 10)	(Col 11)	(Col 12)	(Col 13)	(Col 14)	(Col 15)	(Col 16)	
SOURCE	HAZARDOUS SUBSTANCE	Toxicily	GW Mobility HRS Table 3-8	Tox/Mob Value HRS Table 3-9	Per HRS Table 4-10 & 4- 11	Tox/Per Value HRS Table 4-12	Bioacc "Food Chain" HRS Table 4-15	Tox/Pers /Bioacc	Ecotox HRS Table 4-19	Ecotox/Pers HRS Table 4-20	Есо Віоасс "Епчігол"	Ecotox/Pers/ Bioacc Value HRS Table 4-21	Tox/Mob/ Pers Value HRS Table 4-26	Tox/Mob/ Pers/Bioac Value HRS Table 4-28	Ecotox/Mob Value	Ecotox/Mob/ Pers Value HRS Table 4-29	Ecotox/Mob/ Pers/Bioacc Value HRS Table 4-30	
			SCDM*	(C1xC2)	(SCDM)	(C1xC4)	or (SCDM)	(C5xC6)	or (SCDM)	(C4xC8)	or (SCDM)	(C9xC10)	(C3xC4)	(C6xC12)	(C2xC8)	(C4xC14)	(C10xC15)	
2	2-methyl naphthalene	••	1	••	0.4	••	5,000	·•	1,000	400	5,000	2 E6	••	••	1,000	400	2 E6	
2	fluorene	100	1	100	1	100	50,000	5 E6	1,000	1,000	50,000	5 E7	100	5 E6	1,000	1,000	5 E7	
2	bis(2- ethylhexyl) phthalaie	100	I	100	1	100	5,000	5 E5	1,000	1,000	5,000	5 E6	100	5 E5	1,000	1,000	5 E6	
2	acenaphthalene	10	1	10	0.4	4	500	2,000	10,000	4,000	500	2 E6	4	2,000	10,000	4,000	2 E6	
2	cyanide	100	ı	100	0.4	40	0.5	20	1,000	400	0.5	200	40	20	1,000	400	200	

Superfund Chemical Data Matrix, June 1994.

** = No Calculated Value

Groundwater Observed Release Substances Summary Table

On SI Table 4, list the hazardous substances associated with the site detected in groundwater samples for that aquifer. Include only those substances directly observed or with concentrations significantly greater than background. Obtain toxicity values from the Superfund Chemical Data Matrix (SCDM). Assign mobility a value of 1 for all observed release substances regardless of the aquifer being evaluated. For each substance, multiply the toxicity by the mobility to obtain the toxicity/mobility factor value; enter the highest toxicity/mobility value for the aquifer in the space provided.

Groundwater Actual Contamination Targets Summary Table

If there is an observed release at a drinking water well, enter each hazardous substance meeting the requirements for the observed release by well and sample ID on SI Table 5 and record the detected concentration. Obtain benchmark, cancer risk, and reference dose concentrations from SCDM. For MCL and MCLG benchmarks, determine the highest percentage of benchmark obtained for any substance. For cancer risk and reference dose, sum the percentages for the substances listed. If benchmark, cancer risk, or reference dose concentrations are not available for a particular substance, enter N/A for the percentage. If the highest benchmark percentage or the percentage sum calculated for cancer risk or reference dose equals 100%, evaluate the population using the well as a Level I target. If these percentages are less than 100% or all are N/A, evaluate the population using the well as a Level II target for that aquifer.

SI TABLE 4: GROUND WATER OBSERVED RELEASE SUBSTANCES (BY AQUIFER)

Sample ID	Hazardous Substance	Background Concentration	Toxicity/Mobility	References
DC1CY-002	benzene	< 6 ug/L	100	29, 31
DC1CY-002	acenaphthene	< 1.1 ug/L	10	29, 31
DC1CY-002	fluorene	< 5 ug/L	100	29, 31
DC1CY-002	phenanthrene	< 1.1 ug/L	N/A	29, 31
DC1CY-002	bis (2-ethylhexyl) phthalate	< 10 ug/L	100	29, 31
DC1CY-002	cyanide	< 17 ug/L	100	3, 31
				T

Well ID: _____ Level I ___ Level II ___ Population Served ____ References ___

SI TABLE 5: GROUND WATER ACTUAL CONTAMINATION TARGETS

Highest Toxicity/Mobility 100

Conc. Benchmark % of Cancer Risk % of Cancer RfD % of RfD (ug/L) Concentration (MCL Benchmark Risk Conc. Sample ID Hazardous or MCLG) References Substance

NO DRINKING WATER TARGETS No Drinking Water Targets Highest Percent Sum of Percents Sum of Percents

GROUNDWATER PATHWAY GROUNDWATER USE DESCRIPTION

Describe Groundwater Use within 4 miles of the site: Describe generalized stratigraphy, aquifers, municipal and private wells

The Mound Street PCB Site is located on a "narrow strip of alluvium" between the Mississippi River and limestone bedrock located in the area. Fill material, estimated at 15 to 18 feet thick, overlays the alluvium at the site (Reference 10). Stratified river aluvium consists of silt, clay, and silty clay which becomes coarser with depth and includes gravel lenses. The alluvium can be up to 80 feet thick, with clay and silty clay at shallow depths and silty sand and sand in the deeper portions (Reference 20). Prior to construction of the concrete flood wall, several borings were conducted in the vicinity of the site (Reference 25). Cinders, concrete, rock, and bricks may be up to 26 feet thick, with silt, clay or a mixture of silt and clay underlying the cinders to the limestone bedrock (Reference 25). No confining layer is known to exist between the alluvium and bedrock. Also, no aquifer discontinuity exists within the 4-mile target distance limit (Reference 20). Based on Geoprobe borings conducted during the April, 1996, field activities, the location of the former Mound Street Building is underlain by rock, concrete, bricks and other debris. On the vacant property east of the site, native silt material was encountered to a depth of 27 feet (Reference 24). The bedrock consists of upper Mississippian limestone formations which are, in descending order, Ste. Genevieve Limestone, St. Louis Limestone, shaley limestones of the Salem Formation and Warsaw Formation, Burlington-Keokuk Limestone, and Fern Glen Formation (References 3 and 20). These formations are approximately 600 feet thick (Reference 3). The depth to bedrock is estimated to be from 20 to 30 feet (Reference 3). The shallowest aquitard in the area is the Maquoketa Shale at the top of the Ordovician System (Reference 20). The depth to groundwater is generally approximately two feet above the Mississippi River and is estimated at 20 feet (Reference 3). Groundwater movement is toward the river, to the east and southeast of the site (References 20 and 21). The groundwater depth was measured at 25 feet below the ground surface during the field activities for this SSI. Sinkholes and caves are found in the Mississippian bedrock within the target area. The karst aquifer probably does not directly underlie the site and probably does not affect contaminant transport from the site (Reference 21).

References: 3, 10, 20, 21, 24, 25

Show Calculations of Groundwater Drinking Water Populations for each aquifer: Provide apportionment calculations for blended supply systems.

County average number of persons per household: 2.57 Reference: 27

The City of St. Louis has an average of 2.34 persons per household (Reference 27).

Groundwater within a 4-mile radius of the site is not used for drinking water (References 4, 17 and 20). Irrigation of agricultural crops is possibly conducted via groundwater. The site is not located within a wellhead protection area (Reference 20).

The Mississippi River is located approximately 100 feet east of the sampled monitoring wells and the groundwater level fluctuates with the river level (Reference 3, 20 and 21). Therefore, the groundwater to surface water migration route is a potential exposure pathway.

References: 3, 4, 17, 20, 21, 27

GROUNDWATER PATHWAY WORKSHEET

LIKELIHOOD OF RELEASE	Score	Data Type	Refs
OBSERVED RELEASE: If sampling data or direct observation support a release to the aquifer, assign a score of 550. Record observed release substances on SI Table 4.	550	Н	3, 29
2. POTENTIAL TO RELEASE: Depth to aquifer: 20 feet. If sampling data do not support a release to the aquifer, and the site is in karst terrain or the depth to aquifer is 70 feet or less, assign a score of 500; otherwise, assign a score of 340. Optionally, evaluate potential to release according to HRS Section 3.			
LR =	550	}	
TARGETS			
Are any well part of a blended system? YesNo If yes, attach a page to show apportionment calculations.			
 ACTUAL CONTAMINATION TARGETS: If analytical evidence indicates that any target drinking water well for the aquifer has been exposed to a hazardous substance from the site, evaluate the factor score for the number of people served (SI Table 5). 			
Level II:people x 10 = Level II:people x 1 = Total =	0	Н	3,4,15,17, 20
4. POTENTIAL CONTAMINATION TARGETS: Determine the number of people served by drinking water wells for the aquifer or overlying aquifers that are not exposed to a hazardous substance from the site; record the population for each distance category in SI Table 6a or 6b. Sum the population values and multiply by 0.1.	0	Н	3,4,15,17,20
5. NEAREST WELL: Assign a score of 50 for any Level I Actual Contamination Targets for the aquifer or overlying aquifer. Assign a score of 45 if there are Level II targets but no Level I targets. If no Actual Contamination Targets exist, assign the Nearest Well score from SI Table 6a or 6b. If no drinking water wells exist within 4 miles, assign 0.	0	Н	3,4,15,20,33
6. WELLHEAD PROTECTION AREA (WHPA): In any source lies within or above a WHPA for the aquifer, or if a groundwater observed release has occurred within a WHPA, assign a score of 20; assign 5 if neither condition applies but a WHPA is within 4 miles; otherwise assign 0.	0	н	20
 RESOURCES: Assign a score of 5 if one or more groundwater resources applies; assign 0 if none applies: Irrigation (5 acre minimum) of commercial food crops or commercial forage crops. Watering of commercial livestock. Ingredient in commercial food preparation. Supply for commercial aquaculture. Supply for a major or designated water recreation area, excluding drinking water use. 	5	н	20
Sum of Targets $T =$	5	1	

SI TABLE 6 (From HRS TABLE 3-12): VALUES FOR POTENTIAL CONTAMINATION GROUND WATER TARGET POPULATIONS

SI Table 6a: Other Than Karst aquifers

Distance	Population	Nearest					Popu	lation served by	y Wells within	Distance Catego	огу					
from site		Well (Choose highest)	1 to 10	11 to 30	31 to 100	101 to 300	301 to 1000	1001 to 3,000	3001 to 10,000	10,001 to 30,000	30,001 to 100,000	100,001 to 300,000	300,001 to 1,000,000	1,000,000 to 3,000,000	Population Value	References
			700			- Distances		A .								
0 to ¼ mile		20	4	-	53	164	522	1,633	5,214	16,325	52,137	163,246	521,360	1,632,455		
>¼ to ½ mile		18	2		33	102	324	1,013	3,233	10,122	32,325	101,213	323,243	1,012,122		
½ to 1 mile		9	1	3	17	52	167	523	1,669	5,224	16,684	52,239	166,835	522,385		
>1 to 2 miles		. 5	0.7	3	10	30	94	294	939	2,939	9,385	29,384	93,845	293,842		
>2 to 3 miles		3	0.5	2	7	21	68	212	678	2,122	6,778	21,222	67,777	212,219		
>3 to 4 miles		2	0.3	1	4	13	42	131	417	1,306	4,171	13,060	41,709	130,596		
	Nearest					-								Sum =		

SI TABLE 6 (From HRS TABLE 3-12): VALUES FOR POTENTIAL CONTAMINATION GROUND WATER TARGET POPULATIONS

SI Table 6b: Karst aquifers

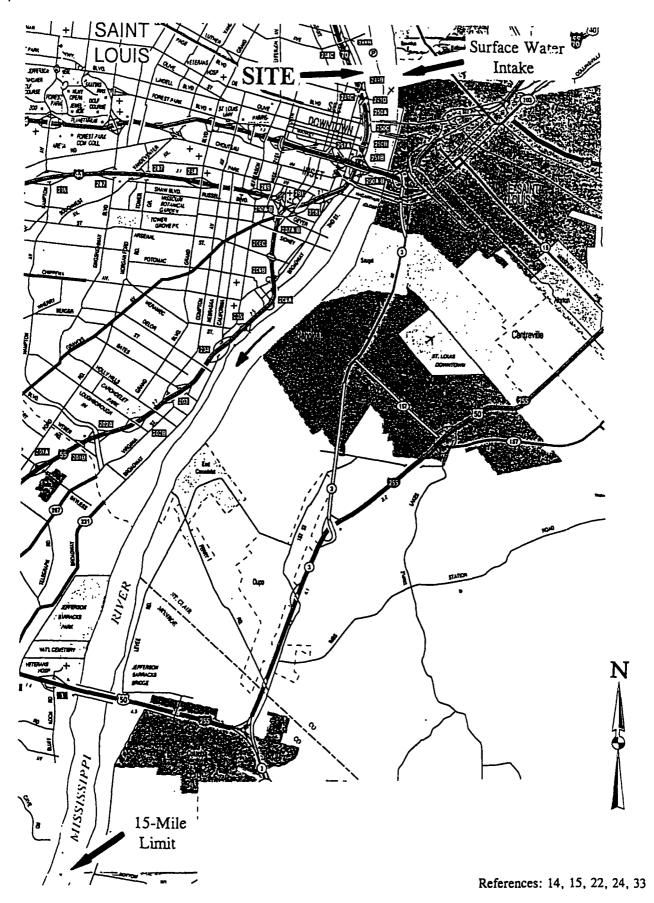
Distance	Population	Nearest					Popu	lation served by	Wells within	Distance Catego	огу			,		-
from site		Well (Choose highest)	1 to 10	11 to 30	31 to 100	101 to 300	301 to 1000	1001 to 3,000	3001 to 10,000	10,001 to 30,000	30,001 to 100,000	100,001 to 300,000	300,001 to 1,000,000	1,000,000 to 3,000,000	Population Value	References
			700	-		· Ellinon		A								
0 to ¼ mile		20	4		53	164	522	1,633	5,214	16,325	52,137	163,246	521,360	1,632,455		
>¼ to ½ mile		20	2	1 6	33	102	324	1,013	3,233	10,122	32,325	101,213	323,243	1,012,122		7 *
½ to 1 mile		20	2	3	26	82 -	261	817	2,607	8,163	26,068	81,623	260,680	816,227		
>1 to 2 miles		20	2	9	26	82	261	817	2,607	8,163	26,068	81,623	260,680	816,227		
>2 to 3 miles		20	2	9	26	82	261	817	2,607	8,163	26,068	81,623	260,680	816,227		-
>3 to 4 miles		20	2	9	26	82	261	817	2,607	8,163	26,068	81,623	260,680	816,227		
	Nearest													Sum =		

GROUNDWATER PATHWAY WORKSHEET (continued)

WAS	TE CHARACTERISTICS			Score	Data Type	Does Not Apply		
8.	the calculated hazardous waste quanti if no Actual Contamination Targets ex	any Actual Contamination Targets exist for the aquifer or overlying aquifer, assign according to a calculated hazardous waste quantity score or a score of 100, whichever is greate no Actual Contamination Targets exist, assign the hazardous waste quantity score alculated for sources available to migrate to groundwater						
9.	Assign the highest groundwater toxici	Assign the highest groundwater toxicity/mobility value from SI Tables 3 or 4						
10.	Multiply the groundwater toxicity/mo Assign the Waste Characteristic score	from the table below: (from						
	Product	WC Score	-	100				
	0	0		100	İ			
	> 0 to < 10	1						
	10 to < 100	2						
	100 to < 1,000	3			1			
	1,000 to < 10,000	6						
	10,000 to < 1E+05	10	1					
	1E+05 to < 1E+06 1E+06 to < 1E+07	18 32						
	1E+06 to < 1E+07	56						
	1E+08 or greater	100						
	TE 100 of greater	100	-					
			WC =	100]			

Multiply LR by T and by WC. Divide the product by 82,500 to obtain the groundwater pathway score for each aquifer. Select the highest aquifer score. If the pathway score is greater than 100, assign 100.

3.33 (Maximum of 100)


GROUNDWATER PATHWAY SCORE:

LR x T x WC 82,500

 $\frac{550 \times 5 \times 100}{82,500} = 3.33$

SURFACE WATER PATHWAY

Sketch of the Surface Water Migration Route: Label all surface water bodies. Include runoff and drainage direction, probable point of entry, and 15-mile target distance limit. Mark sample locations, intakes, fisheries, and sensitive environments. Indicate flow directions, tidal influences, and rate.

SURFACE WATER PATHWAY

Surface Water Observed Release Substances Summary Table

On SI Table 7, list the hazardous substances detected in surface water samples for the watershed, which can be attributed to the site. Include only those substances in observed releases (direct observation) or with concentration levels significantly above background levels. Obtain toxicity, persistence, bioaccumulation potential, and ecotoxicity values from SCDM. Enter the highest toxicity/persistence, toxicity/persistence/ecobioaccumulation values in the spaces provided.

- TP = Toxicity x Persistence
- TPB = TP x Bioaccumulation
- ETPB = EP x Bioaccumulation (EP = Ecotoxicity x Persistence)

Drinking Water Actual Contamination Targets Summary Table

For an observed release at or beyond a drinking water intake, on SI Table 8 enter each hazardous substance by sample ID and the detected concentration. For surface water sediment samples detecting a hazardous substance at or beyond an intake, evaluate the intake as Level II contamination. Obtain benchmark, cancer risk, and reference dose concentrations for each substance from SCDM. For MCL and MCLG benchmarks, determine the highest percentage of benchmark obtained for any substance. For cancer risk and reference dose, sum the percentages of the substances listed. If benchmark, cancer risk, or reference dose concentrations are not available for a particular substance, enter N/A for the percentage. If the highest benchmark percentage or the sum calculated for cancer risk or reference dose equals or exceeds 100%, evaluate the population served by the intake as a Level II target. If the percentages are less than 100% or all N/A, evaluate the population served by the intake as a Level II target.

SI TABLE 7: SURFACE WATER OBSERVED RELEASE SUBSTANCES

Sample ID	Hazardous Substance	Backgrd. Conc.	Toxicity/ Persistence	Toxicity/ persist./ Bioaccum	Ecotoxicity/ Persis/ Ecobioaccum	References
DSX44-402/403	pyrene	< 0.53 mg/kg	100	5,000	5 E5	3,31
DSX44-402/403	benzo(k)fluoranthene	< 0.4 mg/kg	100	5 E6	N/A	3,31
DSX44-402/403	benzo(a)pyrene	< 0.4 mg/kg	10,000	5 E8	5 E8	3,31
DSX44-402/403	benzo(a)anthracene	< 0.4 mg/kg	1,000	5 E7	5 E8	3,31
DSX44-402/403	benzo(g,h,i)perylene	< 0.4 mg/kg	N/A	N/A	N/A	3,31
DSX44-402/403	phenanthene	< 0.4 mg/kg	N/A	N/A	5 E7	3,31
DSX44-402/403	fluoranthene	< 0.52 mg/kg	100	5 E5	5 E6	3,31
DSX44-402/403	di-n-octyl phthalate	< 0.4 mg/kg	N/A	N/A	N/A	3,31
DSX44-402/403	cyanide	< 24 mg/kg	40	20	200	3,31
v						
		Highest Values	10,000	5 E8	5 E8	_

SI TABLE 8: SURFACE WATER DRINKING WATER ACTUAL CONTAMINATION TARGETS

Intake ID	Sample Type	Lev	el I Level	II Po	opulation Served	Re	eferences	
Sample ID	Hazardous Substance	Conc. (u g/L)	Benchmark Conc. (MCL or MCLG)	% of Benchmark	Cancer Risk	% of Cancer Risk Conc.	RfD	% of RfD
	- T			1	~			4
		- 1						1
				4 r				A
	T A			TT			T	7
			Highest percent		Sum of Percents		Sum of Percents	

- This page was intentionally left blank -

SURFACE WATER PATHWAY LIKELIHOOD OF RELEASE AND DRINKING WATER THREAT WORKSHEET

	HOOD OF RELEASE - .AND/FLOOD MIGRATION			Score	Data Type	Refs		
1.	OBSERVED RELEASE: If sampling data or direct observ surface water in the watershed, assign a score of 550. Reco on SI Table 7.			550	Н	3,4		
2.	POTENTIAL TO RELEASE: Distance to surface water: 3 If sampling data do not support a release to surface water in below to assign a score from the table below based on dista potential.	n the watershed,						
	Distance to surface water body <2500 feet	500						
	Distance to surface water body >2500 feet, and			{	ļ			
	Site in annual or 10-yr floodplain	500		}	ļ			
	Site in 100-yr floodplain	400						
	Site in 500-yr floodplain	300		1				
	Site outside 500-yr floodplain	100						
	Optionally, evaluate potential to release according to HRS	Section 4.1.2.1.2	2					
			LR =	550				
	HOOD OF RELEASE NDWATER TO SURFACE WATER MIGRATION			Score	Data Type	Refs		
1.	OBSERVED RELEASE: If sampling data or direct observa surface water in the watershed, assign a score of 550. Reco on SI Table 7.			550	н	20,21		
NOTE:	Evaluate groundwater to surface water migration only for a all of the following conditions:							
1)	A portion of the surface water is within 1 mile of site source	es having a cont	ainment factor	i I	<u> </u> 			
	greater than 0. No aquifer discontinuity is established between the source a	_						
1) 2) 3)	greater than 0.	and the above po	ortion of the					
2) 3) Elevatio	greater than 0. No aquifer discontinuity is established between the source a surface water body.	and the above po of the surface was	ortion of the ater.					
2) 3) Elevatio	greater than 0. No aquifer discontinuity is established between the source a surface water body. The top of the uppermost aquifer is at or above the bottom on of top of uppermost aquifer: 20-25 feet below	and the above poor of the surface we ground surface we ground surface at to release. Op	ortion of the ater.					

SURFACE WATER PATHWAY

LIKELIHOOD OF RELEASE AND DRINKING WATER THREAT WORKSHEET (CONTINUED)

DRINKI	NG WATER THREAT 1		Score	Data Type	Refs			
	Record the water body t intake within the target within the target distance	distance limit in the wa	tershed. If the					
Intake N	ame	Water Body Type	Flow	People Served				
IL-Amer	ican Water Company	Very Large River >100,000 180,000						
						0	Н	17,20
,						ľ		17,20
	intake part of a blended s tach a page to show appo							
3.	ACTUAL CONTAMIN water intake has been ex and evaluate the factor s				:			
	people x 10 =			Total =				
4.	POTENTIAL CONTAN by drinking water intake substance from the site. multiply by 0.1.	s for the watershed that	have not been	exposed to a ha	zardous	0.2	Н	3,15
5.	NEAREST INTAKE: A Water Target for the wat watershed, but no Level exist, assign a score for intakes exist, assign 0.	ets for the r Targets	0	н	15,17			
6.	RESOURCES: Assign a if none applies: Irrigation (5 acre min Watering of commerce	_						
	 Major or designated 	cial food preparation.	cluding drinki	ng water use.		5	Н	20,33
				SUM OF TARGETS	T =	5.2		

SI TABLE 9 (From HRS TABLE 4-14): DILUTION-WEIGHTED POPULATION VALUES FOR POTENTIAL CONTAMINATION FOR SURFACE WATER MIGRATION PATHWAY

Type of Surface	Pop.	Nearest Intake		Numer of People								
Water Body		intake	0	1 to 10	11 to	31 to 100	101 to 300	301 to 1000	1001 to 3,000	3001 to 10,000	10,001 to 30,000	Population Value
Minimal Stream (<10 cfs)		20	0	4	17	53	164	522	1,633	5,214	16,325	
Small to moderate stream (10 to 100 cfs)		2	0	0.4	2	5	16	52	163	521	1,633	
Moderate to large stream (100 - 1,000 cfs)		0	0	0.04	0.2	0.5	2	5	16	52	163	
Large Stream to river (>1,000 to 10,000 cfs)		0	0	0.004	0.02	0.05	0.2	0.5	2	5	16	
Large River (>10,000 to 100,000 cfs)		0	0	0	0.002	0.005	0.02	0.05	0.02	0.05	16	
Very Large River (>100,000 cfs)		0	0	0	0	0.001	0.002	0.005	0.02	0.05	0.02	
Shallow ocean zone or Great Lake (Depth < 20 feet)		0	0	0	0.002	0.005	0.02	0.05	0.2	0.5	2	
Moderate ocean zone or Great Lake (Depth 20 to 200 feet)		0	0	0	0	0.001	0.002	0.005	0.02	0.05	02	
Deep ocean zone or Great Lake (Depth > 200 feet)		0	0	0	0	0	0.001	0.003	0.008	0.03	0.08	
3-mile mixing zone in quiet flowing river (≥ 10 cfs)		10	0	2	9	26	82	261	817	2,607	8,163	

Type of Surface	Pop.	Nearest]
Water Body		Intake	30,001to 100,00	100,001 to 300,000	300,001 to 1,000,000	1,000,000 to 3,000,000	3,000,001 to 10,000,000	Population Value
Minimal Stream (<10 cfs)		20	52,137	163,246	521,360	1,632,455	5,213,590	
Small to moderate stream (10 to 100 cfs)		2	5,214	16,235	52,136	163,245	521,359	
Moderate to large stream (100 - 1,000 cfs)		0	521	1,633	5,214	16,325	52,136	
Large Stream to river (>1,000 to 10,000 cfs)		0	52	163	521	1,632	5,214	
Large River (>10,000 to 100,000 cfs)		0	5	16	52	163	521	
Very Large River (>100,000 cfs)	180,000	0	0.5	2	5	16	52	2
Shallow ocean zone or Great Lake (Depth < 20 feet)		0	5	16	52	163	521	
Moderate ocean zone or Great Lake (Depth 20 to 200 feet)		0	0.5	2	5	16	52	
Deep ocean zone or Great Lake (Depth > 200 feet)		0	0.3	1	3	8	26	
3-mile mixing zone in quiet flowing river (≥ 10 cfs)		10	26,068	81,623	260,680	816,227	2,606,795	
Nearest	Intake =	0					Sum =	2

References: 15, 17, 20

SURFACE WATER PATHWAY

Human Food Chain Actual Contamination Targets Summary Table

On SI Table 10, list the hazardous substances detected in sediment, aqueous, sessile benthic organism tissue, or fish samples (taken from fish caught within the boundaries of the observed release) by sample ID and concentration. Evaluate fisheries within the boundaries of observed releases detected by sediment or aqueous samples as Level II, if at least one observed release substance has a bioaccumulation potential factor value of 500 or greater (see SI Table 7). Obtain benchmark, cancer risk, and reference dose concentrations from SCDM. For FDAAL benchmarks, determine the highest percentage of benchmark obtained for any substance. For cancer risk and reference dose, sum the percentages for the substances listed. If benchmark, cancer risk, or reference dose concentrations are not available for a particular substance, enter N/A for the percentage. If the highest benchmark percentage sum calculated for cancer risk or reference dose equals or exceeds 100%, evaluate this portion of the fishery as subject to Level I concentrations. If the percentages are less than 100% or all are N/A, evaluate the fishery as a Level II target.

Sensitive Environment Actual Contamination Targets Summary Table

On SI Table 11, list each hazardous substance detected in aqueous or sediment sample at or beyond wetlands or a surface water sensitive environment by sample ID. Record the concentration. If contaminated sediments or tissues are detected at or beyond a sensitive environment, evaluate the sensitive environment as Level II. Obtain benchmark concentrations from SCDM. For AWQC/AALAC benchmarks, determine the highest percentage of benchmark of the substances detected in aqueous samples. If benchmark concentrations are not available for a particular substance, enter N/A for the percentage. If the benchmark percentage equals or exceeds 100%, evaluate that part of the sensitive environment subject to Level I concentrations. If the percentage is less than 100%, or all are N/A, evaluate the sensitive environment as Level II.

SI TABLE 10: HUMAN FOOD CHAIN ACTUAL CONTAMINATION TARGETS FOR WATERSHED

Fishery ID Mississippi	River Sample Type	Sediment	Level I	Level II	X	References 3, 15, 31
1 151101 July 151100103117171	Terror Junipio Type					

Sample ID	Hazardous Substance	Conc. (mg/kg)	Benchmark Concentration (FDAAL)	% of Benchmark	Cancer Risk Concentration	% of Cancer Risk Concentration	RfD	% of RfD
DSX44-402/403	pyrene	8	N/A	N/A	N/A	N/A	41	19.5
DSX44-402/403	benzo(k)fluoranthene	3.1	N/A	N/A	4.3 E-3	72093	N/A	N/A
DSX44-402/403	benzo(a)pyrene	5.6	N/A	N/A	4.3 E-4	1302336	N/A	_N/A
DSX44-402/403	benzo(a)anthracene	4.2	N/A	N/A	4.3 E-3	97674	N/A	N/A
DSX44-402/403	benzo(g,h.i)perylene	4.2	N/A	N/A	N/A	N/A	N/A	N/A
DSX44-402/403	phenanthene	4.4	N/A	N/A	N/A	N/A	N/A	N/A
DSX44-402/403	fluoranthene	5.1	N/A	N/A	N/A_	N/A	54	9.4
DSX44-402/403	di-n-octyl phthalate	4.9	N/A	N/A	N/A_	N/A	N/A	N/A
DSX44-402/403	cyanide	1.6	N/A	N/A	N/A	N/A	27	5.9
					<u> </u>			
			Highest Percent	N/A	Sum of Percents	1472093	Sum of Percents	34.8

SI TABLE 11: SENSITIVE ENVIRONMENT ACTUAL CONTAMINATION TARGETS FOR WATERSHED

Environmental ID Mississippi River Sample Type Direct Observation Level I Level II X References 3

Sample ID	Hazardous Substance	Conc. (ug/L)	Benchmark Conc. (AWQC OR AALAC)	% of Benchmark	Rerferences					
	NO CHEMICAL DATA AVAILABLE									
	-									

Highest percent

SURFACE WATER PATHWAY (continued) HUMAN FOOD CHAIN THREAT WORKSHEET

HUMAN FOOD CHAIN THREAT TARGETS	Score	Data Type	Refs
Record the water body type and flow for each fishery within the target distance limit. If there is no fishery within the target distance limit, assign a score of 0 at the bottom of this page.		J	, Cons
Fishery Name: Mississippi River Species paddlefish Species gar Species carp Species sturgeon Species blue catfish Species channel catfish Species flathead catfish Species drum Species buffalo Water Body: Very Large River Production 175 Ibs/yr Ibs/yr Ibs/yr Species sturgeon Production 60 Ibs/yr Species channel catfish Production 2703 Ibs/yr Species drum Production 170 Ibs/yr Species buffalo Production 2171 Ibs/yr			
FOOD CHAIN INDIVIDUAL			
 ACTUAL CONTAMINATION FISHERIES: If analytical evidence indicates that a fishery has been exposed to a hazardous substance with a bioaccumulation factor greater than or equal to 500 (SI Table 10), assign a score of 50 if there is a Level I fishery. Assign 45 if there is a Level II fishery, but no Level I fishery. POTENTIAL CONTAMINATION FISHERIES: If there is a release of a substance with a bioaccumulation factor greater than or equal to 500 to a watershed containing fisheries within the target distance limit, but there are no Level I or Level II fisheries, assign a score of 20. If there is no observed release to the watershed, assign a value for potential contamination fisheries from the table below using the lowest flow at all fisheries within the target distance limit: 	45	Н	18,34
Lowest Flow FCI Value			
< 10 cfs 20			
10 to 100 cfs 2			
> 100 cfs, coastal tidal waters, oceans, 0 or Great Lakes			
3-mile mixing zone in quiet flowing 10 river			
FCI Value =			
SUM OF TARGETS $T =$	45		

SURFACE WATER PATHWAY (continued)

ENVIRONMENTAL THREAT WORKSHEET

When measuring length of wetlands that are located on both sides of a surface water body, sum both frontage lengths. For a sensitive environment that is more than one type, assign a value for each type.

ENVIRO	NMEN	TAL THREAT TA	ARGETS		 	. · · .		Score	Data Type	Refs
	target	distance (see SI Ta	pe and flow for each suble 12). If there is no at the bottom of the pa	sensitive environmen						
Environment Name			Water Body Type	Flow cfs						
Mississippi River		Very Large River	>100,000							
									!	
	observ	ation indicate any	I ATION SENSITIVE El sensitive environment mation on SI Table 11,	has been exposed to	a hazardo	us subs	stance from			
		t Type and Value es 13 and 14)	Multiplier (10 for Level 1, 1 for Level II)		F	Product				
Miss. River 75		75 (habitat know	wn to be used by) x 1			= 75				
				X		=				
			<u>. </u>	X		=				
			·	L.:3		<u> </u>	Sum =	75	н	2,3, 15
10.	POTE	NTIAL CONTAM	INATION SENSITIVE	E ENVIRONMENTS	:					
Flow (cfs)		lution Weight SI Table 12)	Value (SI T	Environment Type and Value (SI Tables 13 & 14)		Potential Contaminati on				
100000	0.000	01	x 25 (wetlands - 0.7 miles in IL)		x 0.1		=2.5 E-4			
100000	0.00001		x 100 (Jefferson Nat'l Exp. Mem. Park)		x 0.1		=1 E-3			
100000 0.00		001 x 100 (Jefferson Bar		racks Park) x 0.1			=1 E-3	2.25	н	1,3,
								E-3	**	20, 33
						 	Sum ≈			
					<u> </u>		T =	75		

SI TABLE 12 (HRS TABLE 4-13): SURFACE WATER DILUTION WEIGHTS

TYPE OF SURFACE WATER BODY	Assigned		
Description	Flow Characteristics	Dilution Weight	
Minimal stream	< 10 cfs	1	
Small to moderate stream	10 to 100 cfs	0.1	
Moderate to large stream	> 100 to 1,000 cfs	0.01	
Large stream to river	> 1,000 to 10,000 cfs	0.001	
Large river	> 10,000 to 100,000 cfs	0.0001	
Very large river	> 100,000 cfs	0.00001	
Coastal tidal waters	Flow not applicable, depth not applicable	0.0001	
Shallow ocean zone or Great Lakes	Flow not applicable, depth less than 20 feet	0.0001	
Moderate depth ocean zone or Great Lakes	Flow not applicable, depth 20 to 200 feet	0.00001	
Deep ocean zone or Great Lakes	Flow not applicable, depth greater than 200 feet	0.000005	
3-mile mixing zone in quiet flowing river	10 cfs or greater	0.5	

SI TABLE 13 (HRS TABLE 4-23)

SURFACE WATER AND AIR SENSITIVE ENVIRONMENTS VALUES

SENSITIVE ENVIRONMENT	ASSIGNED VALUE
Critical habitat for Federal designated endangered or threatened species	100
Marine Sanctuary	
National Park	
Designated Federal Wilderness Area	
Ecologically important area identified under the Coastal Zone Wilderness Act	
Sensitive Areas identified under the National Estuary Program or Near Coastal Water Program of the Clean Water Act	}
Critical Areas identified under the Clean Lakes Program of the Clean Water Act (subareas in lakes or entire small lakes)	
National Monument (air pathway only)	
National Seashore Recreation Area	
National Lakeshore Recreation Area	
Habitat known to be used by Federal designated or proposed endangered or threatened species National Preserve	75
National or Sate Wildlife Refuge	
Unit of Coastal Barrier Resources System	
Coastal Barrier (undeveloped)	
Federal land designated for the protection of natural ecosystems	
Administratively Proposed Federal Wilderness Area	
Spawning areas critical for the maintenance of fish/shellfish species within a river system, bay, or estuary	
Migratory pathway and feeding areas critical for the maintenance of anadromous fish species within river reaches or areas in lakes or coastal tidal waters in which the fish spend extended periods of time	
Terrestrial areas utilized by large or dense aggregations of vertebrate animals (semi-aquatic foragers) for	ł
breeding	
National river reach designated as recreation	
Habitat known to be used by State designated endangered or threatened species	50
Habitat known to be used by a species under review as to its Federal endangered or threatened status Coastal Barrier (partially developed)	
Federally designated Scenic or Wild River	
	
State land designated for wildlife or game management	25
State designated Scenic or Wild River	
State designated Natural Area	
Particular areas, relatively small in size, important to maintenance of unique biotic communities	
State designated areas for the protection of maintenance of aquatic life under the Clean Water Act	5
Wetlands See SI table 14 (Surface Water Pathway) or SI Table 23 (Air Pathway)	

SI TABLE 14 (HRS TABLE 4-24): SURFACE WATER WETLANDS FRONTAGE VALUES

TOTAL LENGTH OF WETLANDS	ASSIGNED VALUE		
Less than 0.1 mile	0		
0.1 to 1 mile	25		
Greater than 1 to 2 miles	50		
Greater than 2 to 3 miles	75		
Greater than 3 to 4 miles	100		
Greater than 4 to 8 miles	150		
Greater than 8 to 12 miles	250		
Greater than 12 to 16 miles	350		
Greater than 16 to 20 miles	450		
Greater than 20 miles	500		

- This page was intentionally left blank -

SURFACE WATER PATHWAY (concluded) WASTE CHARACTERISTICS, THREAT, AND PATHWAY SCORE SUMMARY

WASTE CHARACTER	Score				
11. If an Actual Co exists for the w whichever is gr	10,000				
for the hazardo	nest value from SI Table 7 (ob us substance waste characteriz s waste quantity score and de	WC Score (from Table)			
	Substance Value	HWQ	Product	<u> </u>	
Drinking Water Threat Toxicity/Persistence	10,000	x 10,000	= 1 E8	100	
Food Chain Threat Toxicity/Persistence/ Bioaccumulation	5 E8	x 10,000	= 1 E12	1000	
Environment Threat Ecotoxicity/Persistence /Ecobioaccumulation	5 E8	x 10,000	= 1 E12	1000	
	Product	WC Score			
SURFACE WATER PA	0 > 0 to < 10 10 to < 100 100 to < 1,000 1,000 to < 10,000 10,000 to < 1E+05 1E+05 to < 1E+06 1E+06 to < 1E+07 1E+07 to < 1E+08 1E+08 to < 1E+09 1E+09 to < 1E+10 1E+10 to < 1E+11 1E+11 to < 1E+12 1E+12 or greater THWAY THREAT SCORE	0 1 2 3 6 10 18 32 56 100 180 320 560 1000	Pathway Waste Characteristic (WC) Score (determined	LR x T x WC	
Threat	(LR) Score	Score	above)	82,500	
Drinking Water			100	(maximum of 100) 3.47	
Human Food Chain	550	45	1000	(maximum of 100) 100	
Environment	550	75	1000	(maximum of 60) 60	
SURFACE WATER PA Drinking Water Threat	(maximum of 100)				

SOIL EXPOSURE PATHWAY

If there is no observed contamination (e.g., groundwater plume with no known surface source), do not evaluate the soil exposure pathway. Discuss evidence for no soil exposure pathway.

Soil Exposure Resident Population Targets Summary

For each property (duplicate page 35 if necessary):

If there is an area of observed contamination on the property and within 200 feet of a residence, school, or day care center, enter on Table 15 each hazardous substance by sample ID. Record the detected concentration. Obtain cancer risk, and reference dose concentrations from SCDM. Sum the cancer risk and reference dose percentages for the substances listed. If cancer risk or reference dose concentrations are not available for a particular substance, enter N/A for the percentage. If the percentage sum calculated for cancer risk or reference dose equals 100%, evaluate the residents and students as Level I. If both percentages are less than 100% or all are N/A, evaluate the targets as Level II.

SI TABLE 15: SOIL EXPOSURE RESIDENT POPULATION TARGETS

Sample ID	Hazardous Substance	Conc. (mg/kg)	Cancer Risk Concentration	% of Cancer Risk Conc	RfD	% of RfD.	Toxicity Value	References
DSX44-102	pyrene	21	N/A	N/A	2.3 E3	0.91	100	3, 31
DSX44-107	naphthalene	60	N/A	N/A	N/A	N/A	100	3, 31
DSX44-107	2-methylnaphthalene	13	N/A	N/A	N/A	N/A	N/A	3, 31
DSX44-108	acenaphthylene	2.4	N/A	N/A	N/A	N/A	N/A	3, 31
DSX44-108	acenaphthene	0.69	N/A	N/A	4.7 E3	1.5 E-2	10	3, 31
DSX44-108	fluorene	3.1	N/A	N/A	3.1 E3	0.1	100	3, 31
DSX44-108	cyanide	98	N/A	N/A	1600	6.1	100	3,31
DSX44-109	phenanthene	2.2	N/A	N/A	N/A	N/A	N/A	3, 31
DSX44-109	anthracene	0.78	N/A	N/A	2.3 E4	3.4 E-3	10	3, 31
DSX44-109	fluoranthene	2.8	N/A	N/A	3.1 E3	0.09	100	3, 31
DSX44-109	benzo(a)anthracene	4.5	8.8 E-1	511.4	N/A	N/A	1000	3, 31
DSX44-109	chrysene	4.3	8 8 E1	4.9	N/A	N/A	10	3, 31
DSX44-109	benzo(b)fluoranthene	4.9	8 8 E-1	556.8	N/A	N/A	10,000	3, 31
DSX44-109	benzo(k)fluoranthene	3.4	8.8	38.6	N/A	N/A	100	3, 31
DSX44-109	benzo(a)pyrene	4.2	8.8 E-2	4772.7	N/A	N/A	10,000	3, 31
DSX44-109	ideno(1.2,3-cd)pyrene	2.7	8.8 E-1	306.8	N/A	N/A	1000	3, 31
DSX44-109	benzo(g,h,i)perylene	2.6	N/A	N/A	N/A	N/A	N/A	3, 31
			Highest percent	4772.7	Sum of Percents	7.22	j	

SOIL EXPOSURE PATHWAY WORKSHEET RESIDENT POPULATION THREAT

LIKELIHOOD OF RELI	Score	Туре	Refs								
OBSERVED C contamination that a likelihoo	550	Н	3,31								
			LE=	550							
TARGETS	TARGETS										
2. RESIDENT PO attending school contamination											
Level I: Level II:		Sum =		0	н	3,15					
Assign a score	DIVIDUAL: Assign a score of 50 if a of 45 if there are Level II targets but n ts (i.e., no Level I or Level II targets),	o Level I targets. If no	resident	0	H	3,15					
4. WORKERS: A	WORKERS: Assign a score from the table below for the total number of workers at the site and nearby facilities and within 200 feet of areas of observed contamination associated with										
	Number of Workers	Score									
	0 1 to 100 101 to 1,000 > 1,000	0 5 10 15		5	Н	15					
	L SENSITIVE ENVIRONMENTS: A		errestrial								
	nment (SI Table 16) in an area of obsestrial Sensitive Environmental Type	Value		0	Н	15					
			Sum =								
6. RESOURCES: an area of obser Comr Comr	·										
● Comr	nercial livestock production or comme	rcial livestock grazing.		0	H	33					
		Sum of Targe	ts T=	5							

SI TABLE 16 (HRS TABLE 5-5): SOIL EXPOSURE PATHWAY TERRESTRIAL SENSITIVE ENVIRONMENT VALUES

TERRESTRIAL SENSITIVE ENVIRONMENT	ASSIGNED VALUE
Terrestrial critical habitat for Federal designated endangered or threatened species National Park Designated Federal Wilderness Area National Monument	100
Terrestrial habitat known to be used by Federal designated or proposed threatened or endangered species National Preserve (terrestrial) National or Sate terrestrial Wildlife Refuge Federal land designated for protection of natural ecosystems Administratively proposed Federal Wilderness Area Terrestrial areas utilized by large or dense aggregations of animals (vertebrate species) for breeding	75
Terrestrial habitat used by State designated endangered or threatened species Terrestrial habitat used by species under review for Federal designated endangered or threatened status	50
State lands designated for wildlife or game management State designated Natural Areas Particular areas, relatively small in size, important to maintenance of unique biotic communities	25

SOIL EXPOSURE PATHWAY WORKSHEET NEARBY POPULATION THREAT

LIKE	LIHOOD OF RELEASE		Score	Data Type	Refs
7.	Attractiveness/Accessibility (from SI Table 17 or HRS Table 5-6)	Value10			
	Area of Contamination (from SI Table 18 or HRS Table 5-7)	Value			
		Likelihood of Exposure (from SI Table 19 or HRS Table 5-8)	5	Н	3,15 22,24
		LE =	5		

TARC	GETS	Score	Data Type	Refs
8.	Assign a score of 0 if Level I or Level II resident individual has been evaluated or if no individuals live within ¼ mile travel distance of an area of observed contamination. Assign a score of 1 if nearby population is within ¼ mile travel distance and no Level I or Level II resident population has been evaluated.	1	Н	3,15
9.	Determine the population within 1 mile travel distance that is not exposed to a hazardous substance from the site (i.e., properties that are not determined to be Level I or Level II); record the population for each distance category in SI table 20 (HRS Table 5-10). Sum the population values and multiply by 0.1.	6.6	Н	3,15
_	Sum of Targets T =	7.6		

SI TABLE 17 (HRS TABLE 5-6): ATTRACTIVENESS / ACCESSIBILITY VALUES

AREA OF OBSERVED CONTAMINATION	ASSIGNED VALUE
Designated recreational area	100
Regularly used for public recreation (for example, vacant lots in urban area)	75
Accessible and unique recreational area (for example, vacant lots in urban area)	75
Moderately accessible (may have some access improvements - for example, gravel road) with some public recreation use	50
Slightly accessible (for example, extremely rural area with no road improvement) with some public recreation use	25
Accessible with no public recreation use	10
Surrounded by maintained fence or combination of maintained fence and natural barriers	5
Physically inaccessible to public, with no evidence of public recreation use	0

SI TABLE 18 (HRS TABLE 5-7): AREA OF CONTAMINATION FACTOR VALUES

TOTAL AREA OF THE AREAS OF OBSERVED CONTAMINATION (SQUARE FEET)	ASSIGNED VALUE
≤ to 5,000	5
> 5,000 to 125,000	20
> 125,000 to 250,000	40
> 250,000 to 375,000	60
> 375,000 to 500,000	80
> 500,000	100

SI TABLE 19 (HRS TABLE 5-8): NEARBY POPULATION LIKELIHOOD OF EXPOSURE FACTOR VALUES

AREA OF CONTAMINATION FACTOR VALUE	ATTRACTIVENESS/ACCESSIBILITY FACTOR VALUE									
	100	75	50	25	10	5	0			
100	500	500	375	250	125	50	0			
80	500	375	250	125	50	25	0			
60	375	250	125	50	25	5	0			
40	250	125	50	25	5	5	0			
20	125	50	25	5	5	5	0			
5	50	25	5	5	5	5	0			

SI TABLE 20 (HRS TABLE 5-10): DISTANCE-WEIGHTED POPULATION VALUES FOR NEARBY POPULATION THREAT

Travel Distance Category (Miles)	Pop.	Nu	mber o	f peo	ple wi	thin th	e travel	distance	e categor	y				
	i	0	1 to 10	11 to 30	31 to 100	101 to 300	301 to 1,000	1,001 to 3,000	3,001 to 10,000	10,001 to 30,000	30,001 to 100,000	100,001 to 300,000	300,001 to 1,000,000	Pop. Value
Greater than 0 to 1/4	828	0	0.1	0.4	1.0	4	13	41	130	408	1,303	4,081	13,034	13
Greater than ¼ to ½	2423	0	0.05	0.2	0.7	2	7	20	65	204	652	2,041	6,517	20
Greater than ½ to 1	9672	0	0.02	0.1	0.3	1	3	10	33	102	326	1,020	3,258	33
					Re	ference(s) <u>3, 15,</u>	33			•		Sum=	66

SOIL EXPOSURE PATHWAY WORKSHEET (concluded)

WASTE CHARACTERISTICS

WASTE CHARACTERISTICS									
10. Assign the hazardous waste quantity score calculated for soil exposure									
11. Assign the highest toxicity value from SI Table I	10,000								
12. Multiply the toxicity and hazardous waste quantit Characteristic score from the table below: Product 0 > 0 to < 10 10 to < 100 100 to < 1,000 1,000 to < 10,000 10, 000 to < 1E+05 1E+05 to < 1E+06 1E+06 to < 1E+07 1E+07 to < 1E+08 1E+08 or greater	WC Score 0 1 2 3 6 10 18 32 56 100	WC =							
RESIDENT POPULATION THREAT SCORE (Likelihood of Exposure, Question 1; Target = Sum of Questions 2, 3, 4, 5, 6)	LE x T x WC 82,500	3.33							
NEARBY POPULATION THREAT SCORE: (Likelihood of Exposure, Question 7; Targets = Sum of Questions 8, 9)	<u>LE x T x WC</u> 82,500	0.05							
SOIL EXPOSURE PATHWAY SCORE: Resident Population Threat + Nearby Population Threat		3.38							

Maximum of 100

AIR PATHWAY

Air Pathway Observed Substances Summary Table

On SI Table 21, list the hazardous substances detected in air samples of a release from the site (also see HRS Sections 6.2.1.1 through 6.2.1.3). Include only those substances significantly greater than background levels. Obtain benchmark, cancer risk, and reference dose concentrations from SCDM. For NAAQS/NESHAPS benchmarks, determine the highest percentage of benchmark obtained for any substance. For cancer risk and reference dose, sum the percentages for the substances listed. If benchmark, cancer risk, or reference dose concentrations are not available for a particular substance, enter N/A for the percentage. If the highest benchmark percentage or the percentage sum calculated for cancer risk or reference dose equals or exceeds 100%, evaluate targets in the distance category from which the sample was taken and any close distance categories as Level I. If the percentages are less than 100% or all are N/A, evaluate targets in that distance category and any closer distance category that are nor Level I as Level II.

AIR PATHWAY NOT EVALUATED

SI TABLE 21: AIR PATHWAT OBSERVED RELEASE SUBSTANCES

Sample ID	Level I _	Lev	el II	Distance from Source(s)	References		
Hazardous Substance	Conc. (ug/m³)	Gaseous Particles	Benchmark Conc. (NAAQS OR NESHAPS)	% Of Benchmark	Cancer Risk Concentration	% of Cancer Risk Concentration	RfD	% of RfD
	Highest Toxicity/ Mobility		Highest Percents		Sum of Percents		Sum of Percents	
	Modify							
Sample ID	Level I _	Lev	rel II	Distance from Source(s)	References		
		T					T .	Γ
Hazardous Substance	Conc. (ug/m³)	Toxicity / / Mobility	Benchmark Conc. (NAAQS OR NESHAPS)	% Of Benchmark	Cancer Risk Concentration	% of Cancer Risk Concentration	RfD	% of RfD
		$A \square$	K P		WAY			
	NT		TX	ATTI	ATT	17		
			EV	ALU	AIF			
	Highest Toxicity/ Mobility		Highest Percents		Sum of Percents		Sum of Percents	
Sample ID	Level I	Lev	rel II	Distance from Source((s)	References		
Hazardous Substance	Conc. (ug/m³)	Toxicity / Mobility	Benchmark Conc. (NAAQS OR NESHAPS)	% Of Benchmark	Cancer Risk Concentration	% of Cancer Risk Concentration	RfD	% of RfD
			-					
	Highest Toxicity/ Mobility		Highest Percents		Sum of Percents		Sum of Percents	

AIR PATHWAY WORKSHEET

LIKELI	HOOD OF RELEASE	Score	Type	Refs
1.	OBSERVED CONTAMINATION: If sampling data or direct observation support a release to air, assign a score of 550. Record observed release substances on SI table 21.			
2.	POTENTIAL TO RELEASE: If sampling data do not support a release to air, assign a score of 500. Optionally, evaluate air migration gaseous and particulate potential to release (HRS Section 6.1.2).			
	LE =			
TARGE	TS			
3.	ACTUAL CONTAMINATION POPULATION: Determine the number of people within the target distance limit subject to exposure from a release of a hazardous substance to the air.			
	Level I: people x 10 = Level II: people x 1 = Total =			
4.	POTENTIAL TARGET POPULATION: Determine the number of people within the target distance limit not subject to exposure from a release of a hazardous substance to the air, and assign a total population score from SI Table 22. Sum the values and multiply the sum by 0.1.	7		
5.	NEAREST INDIVIDUAL: Assign a score of 50 if there are any Level I targets. Assign a score of 45 if there are Level II targets but no Level I targets. If no Actual Contamination Population exists, assign ther Nearest Individual score from SI Table 22.	ED		
6.	ACTUAL CONTAMINATION SENSITIVE ENVIRONMENTS: Sum the sensitive environment values (SI table 13) and wetland acreage values (SI table 23) for environments subject to exposure from the release of a hazardous substance to the air.			
	Terrestrial Sensitive Environmental Type Value			
	Wetland Acreage Value			
7.	POTENTIAL CONTAMINATION SENSITIVE ENVIRONMENTS: Use SI Table 24 to evaluate sensitive environments not subject to exposure from a release.		-	
8.	RESOURCES: Assign a score of 5 if one or more resources apply within ½ mile of the source; assign a 0 if none applies. Commercial agriculture. Commercial silverculture. Major or designated recreation area.			
	т-			

SI TABLE 22 (From HRS TABLE 6-17): VALUES FOR POTENTIAL CONTAMINATION AIR TARGET POPULATIONS

Distance from site	Pop.	Nearest Individual	1, 1	Number of People within the Distance Category											
		(choose highest)	1 to 10	11 to 30	31 to 100	101 to 300	301 to 1,000	1,001 to 3,000	3,001 to 10,000	10,001 to 30,000	30,001 to 100,000	100,001 to 300,000	300,001 to 1,000,000	1,000,000 to 3,000,000	Pop. Value
On a source		20	4	17	53	164	522	1,633	5.214	16,325	52,137	163,246	521,360	1,632,455	
0 to ¼ mile			1	4	13	41	131	408	1,304	4,081	13,034	40,812	130,340	408,114	
> ¼ to ½ mile		2	0.2	0.9	3	9	28	88	282	882	2,815	. 8,815	28,153	88,153	
> ½ to 1 mile		1	0.06	0.3	0.9	3	8	26	83	261	834	2,612	8,342	26,119	
> 1 to 2 miles		0	0.02	0.09	0.3	0.8	3	8	27	83	266	833	2,659	8,326	
> 2 to 3 miles		0	0.009	0.04	0.1	0.4	1	4	12	38	120	375	1,199	3,755	
> 3 to 4 miles		0	0.005	0.02	3 .07	0.2	0.7	WA	YY	28	73	229	730	2,285	
Nearest Individual = NOT EVALUATED						Sum =									

References _____

^{*} Score = 20 if the Nearest Individual is within 1/8 mile of a source; score = 7 if the Nearest Individual is between 1/8 and 1/4 mile of a source.

SI TABLE 23 (HRS TABLE 6-18): AIR PATHWAY VALUES FOR WETLAND AREA

WETLAND AREA	ASSIGNED VALUE
< 1 acre	0
1 to 50 acres	25
> 50 to 100 acres	75
> 100 to 150 acres	125
> 150 to 200 acres	175
> 200 to 300 acres	250
> 300 to 400 acres	350
> 400 to 500 acres	450
> 500 acres	500

SI TABLE 24:

DISTANCE WEIGHTS AND CALCULATIONS FOR AIR PATHWAY POTENTIAL CONTAMINATION SENSITIVE ENVIRONMENTS

Distance	Distance Weight	Sensitive Environment Type and Value (from SI tables 13 and 20)	Product
On A Source	Co101	EVALUATE	D
0 - ¼ mile	0.025	x	
1/4- 1/2 mile	0.0054	x	
½- 1 mile	0.0016	х	
1 - 2 miles	0.0005	х	
2 - 3 miles	0.00023	x	
3 - 4 miles	0.00014	x	
> 4 miles	0	x	
		Total Environments Score =	

AIR PATHWAY (concluded)

WASTE CHARACTERISTICS

9.	If any Actual Contamination Targets exist for the air pathway, assign the calculated hazardous waste quantity score or a score of 100, whichever is greater; if there are no Actual Contamination Targets for the air pathway, assign the calculated HWQ score for sources available to air migration.					
10.		n the highest toxicity/mobility value fr gh 6.2.1.3.	om SI Table 21	and HRS Section	ons 6.2.1.1	
11.	Multi	ply the air pathway toxicity/mobility v	alue from SI Ta	ble 21.		
		Product		WC Score		
		0		0		WC=
		> 0 to < 10 10 to < 100		1 2		
		100 to < 1,000		3		
		1,000 to < 10,000		6		
		10, 000 to < 1E+05 R P	ATI	H W	AY	
		1E+06 to <1E+07 1E+07 1E+07 to < 1E+08		32 ₹ 4	X X	
		1E+08 or greater	7 A T	₩ 100 ▲	TIT	
		NOLEV	AL	,UA	IEL)
				LEXTXWC	Δ.	
AIR P	PATHWA	Y SCORE		82,500		,

maximum of 100

SITE SCORE CALCULATION	S	S²
GROUNDWATER PATHWAY SCORE (S _{GW})	3.33	11.11
SURFACE WATER PATHWAY SCORE (S _{sw})	100	10,000
SOIL EXPOSURE SCORE (S _s)	3.38	11.42
AIR PATHWAY SCORE (S _A)	NOT EVALUATED	NOT EVALUATED
SITE SCORE $ \sqrt{\frac{S_{GW}^{2} + S_{SW}^{2} + S_{S}^{2} + S_{A}^{2}}{4}} $		= 50.1

COMMENTS

Based on analytical data collected during this SSI and from previous investigations, an observed release to soil, groundwater, and surface water has been identified for benzene and PAHs. Due to the lack of targets for the soil and groundwater pathways, they are of low concern. The surface water pathway is of primary concern and could be considered a "target" of the soil and groundwater pathways.

PCB contamination was not identified during this SSI or from previous investigations.

The potential sources of benzene and PAH contamination are the FMGP and/or the Petroleum, Fuel and Terminal-Apex Oil facility.

SI SCORESHEET REFERENCES

- Barra, Louise. National Park Service, Gateway Arch. March 15, 1994. Telephone conversation with Don Falls, MDNR. Subject: Park acreage and attendance.
- Brabander, Jerry. U.S. Fish and Wildlife Service. June 14, 1993. Correspondence to Edwin Knight, MDNR. Subject: sensitive environments near the subject site.
- Ecology and Environment/Field Investigation Team (E&E/FIT). October 29, 1991. Screening Site Inspection, Laclede Coal Gas, St. Louis, Missouri.
- Ecology and Environment/Field Investigation Team (E&E/FIT). June 23, 1988. Preliminary Assessment, Mound Street Power Plant, St. Louis, Missouri.
- Edmond, Howard. Metropolitan Sewer District. December 13, 1993. Telephone conversation with Don Falls, MDNR Hazardous Waste Program, Superfund Section.
- Edmond, Howard. Metropolitan Sewer District. November 21, 1995. Telephone conversation with Mike May, Sverdrup.
- Falls, Don. MDNR Hazardous Waste Program, Superfund Section. November 22, 1993a. Mound Street PCB Site Reconnaissance Memorandum.
- Falls, Don. MDNR Hazardous Waste Program, Superfund Section. December 13, 1993b. Latitude/Longitude Calculation Worksheet.
- 9 GEHM Corporation (GEHM). September 1, 1993a. Activities Report, TRRA of St. Louis, First and Mound Streets Site, MDNR Spill Report #07143-KB-1331.
- 10 GEHM Corporation (GEHM). October 26, 1993b. UST Removal Closure Report.
- Lewis, R.H., Petroleum Fuel and Terminal. Letter to Charles Gay, Fire Inspector. Subject: Identification of pipeline leak per a September 8, 1993 telephone conversation. (Received by Howard Edmond, MSD, on September 30, 1993).
- Metropolitan Sewer District, Environmental Compliance Laboratory (MSD). July 19, 1993a. Sample analysis of Brooklyn Street pump station wet well and UST at Brooklyn and Mound.
- Metropolitan Sewer District, Environmental Compliance Laboratory (MSD). August 13, 1993b. Sample analysis of Manhole F-GA1 (#12), (#13), and (#14).
- 14 Missouri State Highway Map. 1993.
- 15 Missouri Department of Natural Resources (MDNR). March 21, 1994a. Preliminary Assessment. Mound Street PCB Site, St. Louis, Missouri.
- Missouri Department of Natural Resources (MDNR). March 30, 1994b. Missouri Water Quality Standards, 10 CSR 20-7.031.
- 17 Reed, Richard, Illinois American Water Company. December 29, 1993. Telephone conversation with Don Falls, MDNR Hazardous Waste Program, Superfund Section.
- Robinson, J., MDC. March 15, 1994. Telephone conversation with Don Falls, MDNR Hazardous Waste Program, Superfund Section.
- 19 Smith, S.I., St. Louis MSD. July 8, 1993. Special Problem Investigation of Brooklyn Street Pump Station.

- Starbuck, Edith. Missouri Department of Natural Resources, Division of Geology and Land Survey. December 29, 1993. PA/SI Report for the Mound Street Site, St. Louis, City.
- Starbuck, Edith. Missouri Department of Natural Resources, Division of Geology and Land Survey. January 5, 1994. Existence of karst near the Mound Street Site.
- Sverdrup Corporation. December 11, 1995. Field Log Book and Trip Report for Site Reconnaissance Activities at the Mound Street PCB Site, St. Louis, Missouri.
- Sverdrup Corporation. March 4, 1996a. Field Sampling Plan, Mound Street PCB Site, St. Louis, Missouri.
- Sverdrup Corporation. April 2, 1996b. Field Log Book and Trip Report for Site Sampling Activities at the Mound Street PCB Site, St. Louis, Missouri.
- U.S. Army Corps of Engineers, St Louis District, (USACE). August 30, 1962. Flood Protection Reach 3, Floodwall and General Contract Items. Station 352+00 to Station 369+00 drawing and Soil Exploration Data.
- U.S. Department of Agriculture, Soil Conservation Service (USDA). April 1982. Soil Survey of St. Louis County and St. Louis City, Missouri.
- U.S. Department of Commerce, Bureau of Census (Census). 1990. 1990 Census of Population and Housing, Summary of Population and Housing Characteristics, Missouri.
- 28 U.S. Department of Commerce (USDC). 1983. The Climatic Atlas of the United States.
- U.S. Environmental Protection Agency (U.S. EPA). May 3, 1996. Data Transmittal for Activity DC1CY, Mound Street PCB Site.
- 30 U.S. Environmental Protection Agency (U.S. EPA). 1992. Guidance for Performing Site Inspections under CERCLA. EPA 540-R-92-021.
- 31 U.S. Environmental Protection Agency (U.S. EPA). 1995. Hazard Ranking System. Superfund Chemical Data Matrix Table.
- 32 U.S. Environmental Protection Agency (USEPA). November 1992. The Hazard Ranking System Guidance Manual. Publication 9345.1-07. Washington, DC.
- U. S. Geological Survey (USGS). 7.5 Minute Series Topographic Map. Granite City, Missouri-Illinois 1954 (photorevised 1974), Cahokia, Illinois-Missouri 1954 (photorevised 1974), Clayton, Missouri 1954 (photorevised 1974), French Village, Illinois 1954 (photorevised 1982), Monks Mound, Illinois 1954 (photorevised 1993), Webster Groves, Missouri 1954 (photorevised 1974).
- U.S. Government Printing Office, Environmental Protection Agency, Hazard Ranking System Final Rule.

 December 14, 1990. 40 CFR Part 300. Federal Register/Volume 55/no. 241.

DEPARTMENT OF NATURAL RESOURCES Division of Environmental Quality Hazardous Waste Program

Reference 1

TELEPHONE OR CONFERENCE RECORD

File: Mound Street PCBs Date: March 15, 1994

TELEPHONE (314) 425-4468 CONFERENCE

Incoming () Field ()
Outgoing (X) Office ()

<u>SUBJECT:</u> Jefferson National Expansion Memorial - Gateway Arch

PERSONS INVOLVED

Name
Ms. Louise Barra
Representing
National Park

Ms. Louise Barra

Don Falls

National Park Service, Gateway Arch
MDNR, Hazardous Waste Program

SUMMARY OF CONVERSATION:

I phoned the public affairs office of the Jefferson National Expansion Memorial in St. Louis and spoke with a Ms. Louise Barra. Ms. Barra is a public affairs officer with the National Park Service. I asked Ms. Barra if she could tell me the exact acreage of the park and the total annual attendance. Ms. Barra informed me that the park encompasses just over 90 acres and the total annual attendance for all the park property, including the parking structure, is approximately 2.7 million people.

FINAL RESULTS:

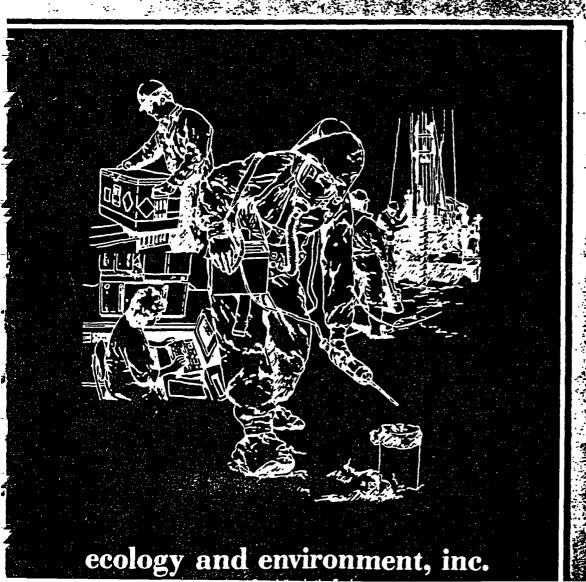
This information will be incorporated into the Mound Street PCB Preliminary Assessment.

Don Falls

Environmental Specialist Hazardous Waste Program

In Falls

DF:so


Final Report
Screening Site Inspection
Laclede Coal Gas
St. Louis, Missouri
EPA ID# MOD981715980

TDD #F-07-9008-020 PAN #FM00579SA
Site #Y33 Project #002
Prepared by E & E/FIT for the
Region VII EPA RPO
Project Manager: Keith Brown
Superfund Contact: Greg Reesor
Date: October 29, 1991

HAZARDOUS SITE EVALUATION DIVISION CEIVEN

ARDO'S V CERTISEAN SSOUN CERTIFICATION

Field Investigation Team Zone II

CONTRACT NO. 68-01-7347

Preliminary Assessment Mound Street Power Plant St. Louis, Missouri TDD #F-07-8708-29 PAN #FM00579PA

Site #Y33 Project #001
Prepared by: E & B/FIT for Region VII EPA

Task Leader: Eric Hess, E & E/FIT
Superfund Contact: Pauletta R. France-Isetts

Date: June 23, 1988

DEPARTMENT OF NATURAL RESOURCES Division of Environmental Quality Hazardous Waste Program

TELEPHONE OR CONFERENCE RECORD

File: Mound Street PCB Site Date: December 13, 1993

TELEPHONE (314) 436-8735 CONFERENCE

Incoming () Field ()
Outgoing (X) Office (X)

SUBJECT: Mound Street PCB Site

PERSONS INVOLVED

Name
Don Falls
Howard Edmond
Anne Olberding
Bob Jackson

Representing
MDNR/HWP
Metropolitan Sewer District
USEPA, Region VII (913) 551-7718
USEPA, Region VII (913) 551-7020

SUMMARY OF CONVERSATION:

I phoned Mr. Howard Edmond of the MSD (Metropolitan Sewer District) to find out exactly how the waste oil was seeping into the Brooklyn Street pump station. Mr. Howard explained that sometime around the middle of July 1993, oil was noticed seeping from the storm sewer into the wet well of the pump station. Mr. Howard said that the Brooklyn Street pump station only pumps storm water, and therefore only operates during periods of rain. Mr. Howard said that the oil stayed on top of the wet well, and was later pumped off by React Environmental. He said that it was possible that some of the oil made it out to the river. Mr. Howard said that the MSD laboratory did the analysis on the samples that he collected. The results indicate Aroclor 1254 in the oil at 47 parts per million.

I then asked Mr. Howard if he was familiar with the history of the Mound Street site. He related that there was a rumor that the basement of the former Union Electric building, which occupied part of the site, was said to be full of old transformers, and was claimed to be an EPA (U.S. Environmental Protection Agency) Superfund site where a "poor cleanup" was performed before the building was demolished.

Mr. Howard further said that he believes that the City of St Louis may now own the former Union Electric property, and Inspector Charles Gay with the St. Louis Fire Department would know more about the site, because he has been working on the site for some time.

Mound Street PCB December 13, 1993 Page 2

ACTION TAKEN:

I phoned the St. Louis City Fire Department (314/298-1900) and asked to speak with Mr. Charles Gay. The secretary there said that Mr. Gay was out of the office, but would leave a message for him to call me. I then called Ms. Anne Olberding, EPA Region VII, and asked if she was aware of an EPA cleanup in the vicinity of the Mound and First Streets in St. Louis. Ms. Olberding said that location did not ring a bell, but she would search Cerclis according to site latitude and then send me the results.

In addition, I also spoke with Mr. Bob Krager, MDNR, Hazardous Waste Program, and asked if he was aware of any Superfund activities at the former Union Electric property at Mound Street. Mr. Krager said that he was unaware of any activities at that particular location and suggested that I contact Mr. Bob Jackson at EPA Region VII. I phoned Mr. Jackson who said that he would check the TOSCA records. Mr. Jackson called back and informed me that he could find nothing in the records about an EPA cleanup at the Union Electric power plant near Mound Street.

FINAL RESULTS:

This information will be used in the Mound Street PCB preliminary assessment.

Don Falls

Environmental Specialist

DF:so

Memo No.	^
Date 1200 2	
Between (SvC)	he May Placed Rec'd
, ,	amond Tel (319) 436-8735
	metropolitan Sawer District (MSD)
Subject_Mound	Street PCBs/USTs/Mankole Sampling
1) - old grand old UST TRRA	my building south end - found on got in manhole of floodwalls
- rever coul	d really determine exact source
- Pemoral + Pailio Chief	was turned over to city of 57. Louis ad - was on railroad property Horne - Fire I repertor
(May have city Block	1 Lot # 5) 289-1900
Cworke	Will fire marshall TRailward Will Central
- little of	tet feltween granery of sump station
	- floodwall manholes - not severage
	but underground drawing keeps
- no seepa	ge of sil from 1993 that he knows
<u> </u>	DNR & FRA taken care buch ten
- Samples City	- permit office Hampton are - City block of Lot #
flordwill	F-6A1 (12) (13) (14) comanhole nothing to do with M 5D -Corp of Engineers need to check
Original: cc:	Page of

Sverdrup TELECON MEMO

Memo No/	Job No. 10865 - 370303
Date Mori - 2/ 19 95	Time 9:00 m
Between (SVC) Mife May	Placed Rec'd
And Howard Edmond	Tel (3/h) 436 - 8735
of St. Louis M.S.D	•
Subject Mound Street PCB	Bs / USTs & other source / pump syste.
City Block &	Block #
1.0ld # 622-33	13 - House Numbering (address)
	Then they can get you block #
- pumps to Bis	sell Pt. Treatment 10 F Grand niles
3014 N BUT	n. les
- goespint then t	terceptor sewer first
Des 1	odies quess as to how it
Boundary (- Dakota	to & North comes to
- goes west	to Kings Highway
- Denied of A	re- alema under FOT
The state of the s	= 07 - need to write letter
boss - 1	Director of Environment Compliance
	No. 10 t Grand "T'MS) St. Lovis, MO 63147
Original:	Page 2_ of 3

Sverdrup

TELECON MEMO

Memo No	Job No. 10865-3	70303
Date 19 95	Time 9:00	m
Between (Sv C) Mike May		
And Howard Edmond	Tel (<u>3/4) </u>	6-8735
or St. Louis M. S.D.		
Subject Mound Street PCB	5/USTs tother	sources / pump syce
Summan	,	, , ,
	the manho	les were not
"storm disinase"	elated.	The pump
Station only pump	sunder c	ircumstances
of exceedently hears	y July	tation or
Office Naver.	holes are one	Par sutestion
Plack stage. Men	ll (unlargound	
- I there would	have been	ail recognize
sinke 1993 then Ho	1	
have definitely report	sing station	in the
	\mathcal{O}	
- call chief Horne li	est, before co	elling city
Lor lot 4 place #	5 - Thay ha	ve This
information already.		
		
:	······	
Original:	p	$g_{\text{age}} = 3$ of 3
		DAM VI /

' FILE: Mound Street PCB's

Reference 7

DEPARTMENT OF NATURAL RESOURCES

- MEMORANDUM -

DATE:

November 22, 1993

TO:

Mound Street PCB Site

FROM:

Don Falls, Environmental Specialist Site Evaluation Unit, Superfund Section

Hazardous Waste Program

SUBJECT: Mound Street PCB Site Reconnaissance

On November 11, 1993, I traveled to the Mound Street PCB site to conduct a site reconnaissance and meet with Mr. Daryl Bowles and Mr. David Gehm of the GEHM Corporation. The site is located at Mound and Brooklyn Streets, on the Riverfront, in downtown St Louis. I arrived at the site at 8:35 a.m. and first made a vehicle reconnaissance of the area within 1/4 mile of the site. The weather was clear and sunny with a temperature of approximately 55 degrees.

At 9:00 a.m., I met with Mr. Bowles and Mr. Gehm at the old terminal building. They were at the site to oversee the removal of waste oil that had been temporarily stored on-site from an earlier underground storage tank removal. I first asked Mr. Bowles if he could show me where the Metropolitan Sewer District pump station was located. He directed me to the pump station located at the end of Brooklyn Street, approximately 400 feet from the old terminal building. The pump station is located next to the flood wall and is surrounded by a security fence. I noted that five 55-gallon drums marked as waste oil and PCBs (Polychlorinated Biphenyl) were stored against the pump station south wall.

I then asked Mr. Bowles if he would show me exactly where the boring attempts were made that he had referred to in his activities report. We walked across Mound Street to an area immediately east of the old terminal building. This area appeared as an anomaly on the IR/T (Infrared Thermograph) survey completed in August 1993 by Entech Engineering as part of GEHM Inc.'s investigation of the site. Mr. Bowles explained that the drilling attempts were unsuccessful due to solid rock, cinder block, and other debris being encountered at a depth of about five feet. Mr. Bowles informed me that a long-time employee of Apex Fuel Company claims that Union Electric Company once used a building at this particular site to store transformers. The

Mound Street PCB Site November 22, 1993 Page 2

basement of this building was said to be full of waste oil when the building was demolished several years ago. Mr. Bowles indicated that the foundation or basement of this demolished building might explain the IR/T anomaly.

I asked Mr. Gehm about the capabilities of the IR/T and if it could image at depths of several feet. He said that he thought that the IR/T could image areas of dissimilar makeup to a depth of about 20 feet. Mr. Bowles added that buried objects as small as five-gallon buckets have been identified with the instrument. Mr. Gehm said that the IR/T images are taken using a lift bucket and are taken at a height of about 30 feet above the ground.

At 10:15 a.m., Mr. Gehm and Mr. Bowles said that they had to leave to finish with the removal of the waste oil. I thanked them for their assistance and told them that I would stay in touch with them. After taking more photographs of the area, I then left the site at approximately 11:00 a.m.

DF:so

LATITUDE AND LONGITUDE CALCULATION WORKSHEET #2 LI USING ENGINEER'S SCALE (1/60)

SITE NAME: Mound Street PCB's	cerclis #: <u>M0 000 009367</u>
	SSID:
ADDRESS: 100 Mound Street	
CITY: St. Louis STATE: MO	zip code: 63102
SITE REFERENCE POINT: Center of former Union Elec	
USGS QUAD MAP NAME: Granite City, IL TOWNSHI	IP: 45(N)'S RANGE: 7 (E)W
SCALE: 1:24,000 MAP DATE: 1954 SECTION:	1/41/41/4
MAP DATUM: (1927) 1983 (CIRCLE ONE) MERIDIAN:	5th Principal
COORDINATES FROM LOWER RIGHT (SOUTHEAST) CORNER (
LONGITUDE: 90 ° 07 . 30 " LATITUDE:	<u>38 ° 37 ′ 30 - </u>
COORDINATES FROM LOWER RIGHT (SOUTHEAST) CORNER	
LONGITUDE: 90 ° 10 ' 00 " LATITUDE:	38 37, 30
CALCULATIONS: LATITUDE (7.5' QUADRANGLE MAP)	
A) NUMBER OF RULER GRADUATIONS FROM LATITUDE GRI	D LINE TO SITE REF POINT: 195
B) MULTIPLY (A) BY 0.3304 TO CONVERT TO SECONDS:	
A × 0.3304 = 64.42 =	
c) express in minutes and seconds (1'= 60"): 1	4.42
D) ADD TO STARTING LATITUDE:3837 · 30 . 00	- + 1 , 4 . 42 -
SITE LATITUDE: 38 • 38 · 34Q0 -	
CALCULATIONS: LONGITUDE (7.5' QUADRANGLE MAP)	
A) NUMBER OF RULER GRADUATIONS FROM RIGHT LONGITUD	DE LINE TO SITE REF POINT: 173
B) MULTIPLY (A) BY 0.3304 TO CONVERT TO SECONDS:	
$A \times 0.3304 = 57.15$	
c) express in minutes and seconds (1'= 60"):0	· 57 . 15 -
and to starting longitude: 90 • 10 · 00 00	_" + <u>0 - ′ _57 · 15 </u> =
SITE LONGITUDE: 90 • 10 ' 57 . 15 "	
NVESTIGATOR: DON FALLS	DATE: 12/13/93

ACTIVITIES REPORT
TRRA of St. Louis
First & Mound Streets Site
MDNR Spill Report
07143 - KB - 1331

SEP 15 1993

The GEHM Corporation 1417 Bingham Rd. P.O. Box 65 Boonville, MO 65233

TABLE OF CONTENTS

SECTION	PAGE
1.0 PROJECT SYNOPSIS	1
2.0 DESCRIPTION OF SURROUNDING PROPERTIES	1
3.0 SITE DESCRIPTION	2
4.0 SITE ACTIVITIES 4.1 Tank Contents Removal 4.2 Infrared Thermographic Survey 4.3 Drilling/Sampling	3 3 4 · ; 6
5.0 SUMMARY DISCUSSION	7
LIST OF ATTACHMENTS:	
Copy of TRRA Area Drawing Laboratory Reports Boring Logs	

ACTIVITIES REPORT TRRA of St. Louis First & Mound Streets Site MDNR SPILL REPORT # 07143 - KB -1331

1.0 PROJECT SYNOPSIS

This is a report of activities and findings resulting from the discovery of oils seeping into a pump station operated by Metropolitan Sewer District (MSD) in St. Louis, Missouri. On July 14, 1993, MSD reported this situation to the MDNR. MSD analytical information revealed PCB levels of less than 50 ppm in the oils seeping into the pump station. Additionally, a sample was obtained from waste oil contained in an underground storage tank present in the area, and owned by Terminal Railroad Association of St. Louis (TRRA). The St. Louis Fire Department (SLFD) notified TRRA on July 28, 1993 and requested the contents of the tank be removed. TRRA was unaware of the existence of the tank prior to notification by the SLFD.

In response to the situation, TRRA initiated and completed the following tasks: ...

- Contents of the tank were removed on August 4, 1993. The tank was completely cleaned and freed of all liquids. The material was containerized on-site in 55 gallon drums for characterization and disposal.
- An Infrared Thermographic Survey was conducted of the area in an attempt to characterize leak plumes or trails.
- Three borings were advanced in the immediate area to determine subsurface soil conditions. Two soil samples were obtained from the site and submitted to a qualified laboratory for chemical analysis.

This report documents the response efforts and findings of the investigatory activities.

2.0 DESCRIPTION OF SURROUNDING PROPERTIES

The property is bordered by gravel roads on the north, east, and south sides. To the west is a gravel covered area containing truck scales and operated by Apex Oil Co. Across the road (Mound Street), and to the south is an empty lot formerly occupied by Union Electric Company of Missouri. To the east are several sets of railroad tracks immediately adjacent to the flood wall. To the north (across Brooklyn Street), is a facility operated by Continental Cement Company (apparently used for cement loading/unloading). The MSD Pump Station is situated adjacent to the flood wall and approximately 400-500 ft. northeast of the tank location. Southwest of the property (across Mound street) is a bulk petroleum storage/distribution facility. This facility is characterized by several large

(>500,000 gallon capacity) above ground storage tank systems.

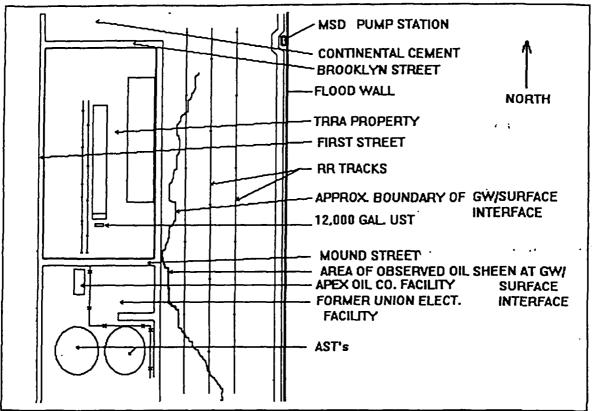


FIGURE 1: AREA SKETCH SHOWING PROPERTY AND SURROUNDING PROPERTIES. (APPROX. SCALE: 1"=180')

Numerous combined sewer, water and other utilities exist (some abandoned) throughout the area which were not completely defined for this report. Utilities which were obvious from site observations and from conversations with MSD personnel included a sewer line adjacent to the TRRA property along Mound Street, and a main line extending west from the pump station. Several underground utility lines run parallel to the railroad tracks and flood wall in a north - south direction. A TRRA property drawing identified a vitrified pipe drain traversing the site from approximately the tank location to the southeast corner of the property (copy provided in attachments). No attempts were made intrusively to locate and verify the existence of this pipe, however, IR/T did not provide a signature typical of an underground conduit acting as a migratory pathway.

A slight gradient (approx. 1:20) typifies the immediate area from west to east.

GEHM # 0116

Groundwater was encountered on the site at a depth of 8 to 8.5 feet from surface. However, site activities were conducted one day following the crest of the Mississippi River on August 1, 1993. Evidence of extreme hydrostatic pressure in the area was observed by water shooting approximately 10 feet high from a Corps of Engineers piezometer located adjacent to the flood wall (approximately 400 feet from the UST), and by a groundwater/surface interface along the area between the eastern most road and the railroad tracks (see Figure 1). Observations of this interface revealed an apparent petroleum sheen present in many areas where the groundwater was seeping from the

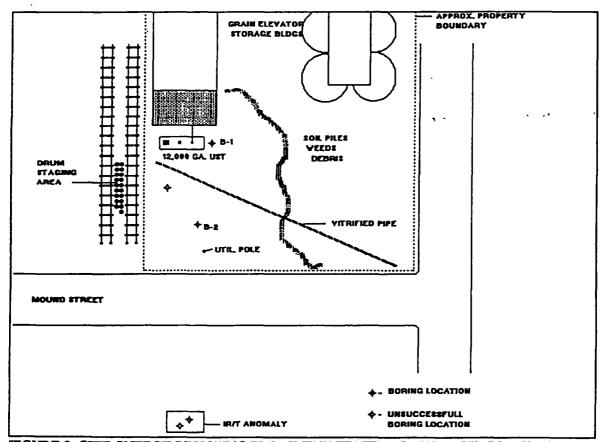


FIGURE 2: SITE SKETCH DEPICTING PROMINENT FEATURES. (APPROX. SCALE: 1"=200')

interface. A sheen was observed in an area extending from a line approximately even with the south side of the TRRA property, south to a line approximately even with the south side of the former Union Electric property.

ACTIVITIES REPORT TRRA, FIRST STREET SITE, ST. LOUIS, MO SEPTEMBER 1, 1993

3.0 SITE DESCRIPTION

The parcel of property identified as TRRA property and where the UST exists, measures approximately 150 ft. by 340 ft. The property is generally situated in a north-south direction between the ends of Mound and Brooklyn Streets, St. Louis County, St. Louis, Missouri. Two structures are on the property which appear to be abandoned grain elevator and storage/handling structures constructed of reinforced concrete. The larger of the two structures measures approximately 40 ft. by 160 ft. and is situated along the east side of the property. The smaller structure measures approximately 20 ft. by 170 ft., is situated along the west side of the property with the UST located at the south end. A railroad siding runs adjacent to this smaller structure as well.

4.0 SITE ACTIVITIES

The purpose of the site activities was twofold. First was in response to the requests of the SLFD assuming the tank as the most likely source of the contaminants entering the MSD pump station, and secondly, to assess the most likely migratory pathway of the contaminants for the purpose of determining the most effective abatement measures.

4.1 Tank Contents Removal.

On August 4, 1993, field personnel were mobilized to the site to conduct removal of the tank contents and cleaning of the tank. This procedure was accomplished by Environmental Operations, St. Louis, Missouri. A vacuum truck was used to pump material from the tank then placed in 55 gallon drums, staged on site. The tank was entered, following Confined Space Entry Procedures to remove and clean the remaining product and debris. Samples of the waste were obtained and submitted to American Interplex Corporation for analyses and summarized in the following table.

GEHM # 0116 PAGE 4

TANK WASTE ANALYSIS SUMMARY					
PARAMETER	UNIT	RESULT	METHOD		
IGNITABILITY	۰F	Non-ignitable below 212	EPA 1010		
TOTAL HALIDES	mg/Kg	880	EPA 9020		
РСВ	mg/Kg	<10	EPA 600/4-81/045		
HEAT CONTENT	ВТИЛЬ	9480	. ; ASTM D240		
TCLP: SILVER ARSENIC BARIUM CADMIUM CHROMIUM MERCURY LEAD SELENIUM	mg/l mg/l mg/l mg/l mg/l mg/l	<.007 <.02 2.1 .019 .0096 <.01 <.1 <.02	EPA 1311 (FEDERAL REGISTER/VOL. 57, NO. 227/NOVEMBER 24, 1992), 3010A, 6010A, 7470.		

Note: Analysis parameters were selected for the purpose of determining disposal options.

Sixteen drums (approximately 880 gallons) of sludge/liquid, and one drum containing solid debris were generated. The waste was dual phased consisting of 60% ethylene glycol and 40% waste oils (based on appearance).

The tank system was constructed of steel and riveted with the top of the tank at ground surface. An eighteen inch diameter manway centered the tank with a two inch line extending from the tank, above grade, through the wall of the nearby structure. Tank dimensions were 10.5' dia., and 18.5' in length providing a capacity of 12,000 gallons. Tank depth was at 10.5 feet from surface.

4.2 Infrared Thermographic Survey (IR/T).

An Infrared Thermographic Survey was conducted in the immediate area on August 17, 1993 by EnTech Engineering, Inc. Infrared Thermography (IR/T) was selected to be performed at this site due to its ability to provide on-site, real time data. IR/T measures the heat energy emitted from the earths surface stored during daylight hours. Areas of dissimilar chemical or physical make-up (such as petroleum contaminated soils versus non-petroleum contaminated soils) emits stored heat energy at different rates. IR/T is used to identify potential contaminated areas in relation to a known source such as an Underground Storage Tank, Pipeline, etc.

The results of the IR/T investigation for this site did not portray evidence of a leak

GEHM # 0116 PAGE 5

plume, trail or other leak signature which would suggest a release capable of migrating from the UST to any point off-site.

The investigation did, however, indicate an anomaly on the former Union Electric Company property south of the TRRA property (see An area measuring Figure 2). approximately 10' x 10' was identified. IR/T cannot identify the cause of an anomaly without either an intrusive investigation or knowledge of a potential source of an anomaly. At the request and permission of Inspector Charles Gay (SLFD), this area was investigated and described in section 4.3.

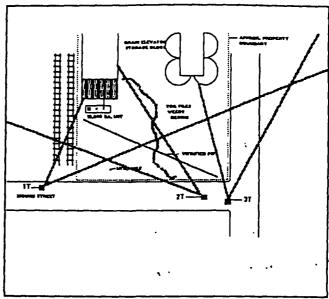
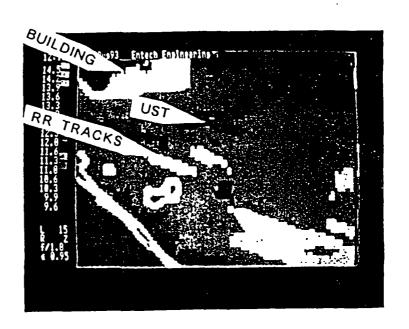


FIGURE 3: SITE SKETCH SHOWING AREAS DEPICTED ON IR/T THERMOGRAMS.


From the IR/T data generated, three views were selected for presentation in this report. These views are depicted on the following site sketch and the thermograms are presented on the following pages. The data was gathered between 11:00 p.m and midnight from a lift truck at approximately 30'. The corresponding photographs are provided for the purpose of reference.

GEHM # 0116

PECIALISTS IN NON-DESTRUCTIVE TESTING • 111 Marine Lane • St. Louis, MO 63146 • U.S.A. • (314) 434-5255 • FAX: (314) 434-3270

VISUAL IMAGE NUMBER: 1V

THERMOGRAM IMAGE NUMBER: 1T

LOCATION:

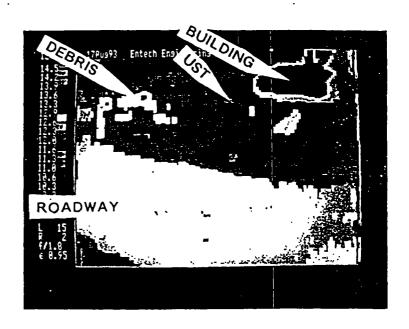
Terminal R.R.

1st and Mound Street St. Louis, Missouri

ITEM:

Example data image

LOCATION:


Refer to drawing item #1

INVESTIGATION DATE: 8/17/93

SPECIALISTS IN NON-DESTRUCTIVE TESTING . 111 Marine Lane . St. Louis, MO 63146 . U.S.A. . (314) 434-5255 . FAX: (314) 434-3270

VISUAL IMAGE NUMBER: 2V

THERMOGRAM IMAGE NUMBER: 2T

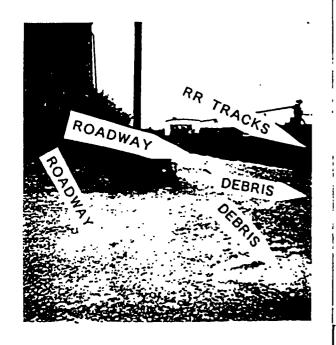
LOCATION:

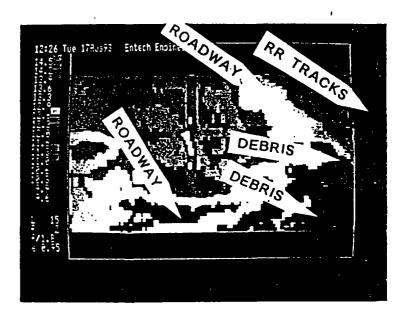
Terminal R.R.

1st and Mound Street St. Louis, Missouri

ITEM:

Example data image


LOCATION:


Refer to drawing item #2

INVESTIGATION DATE: 8/17/93

:PECIALISTS IN NON-DESTRUCTIVE TESTING • 111 Marine Lane • St. Louis, MO 63146 • U.S.A. • (314) 434-5255 • FAX: (314) 434-3270

VISUAL IMAGE NUMBER: 3V

THERMOGRAM IMAGE NUMBER: 3T

LOCATION:

Terminal R.R.

1st and Mound Street St. Louis, Missouri

ITEM:

Example data image

LOCATION:

Refer to drawing item #3

INVESTIGATION DATE: 8/17/93

4.3 Drilling/Sampling.

On August 4, 1993, a drilling crew was mobilized to the site and a total of five boring attempts were made. Three attempts were unsuccessful with auger refusal at five feet. One unsuccessful attempt was made on site approximately 30 feet south of the west end of the tank. Solid debris was encountered to a depth of 5 feet and the attempt was abandoned. At the request and permission of Inspector Charles Gay (SLFD), two other attempts were made in the area of the IR/T anomaly discovered within the former Union Electric Property. Both attempts were abandoned at a depth of 5 feet encountering solid rock debris.

The two successful attempts were located at the east (down gradient) end of the tank location, and approximately 37.5 feet south of the tank location. One sample was obtained from each of these borings and submitted to a qualified laboratory per analysis presented in the following table

SAMPLE RESULTS SUMMARY TABLE (in ppm)											
I.D	LOCATION	ТРН	PCB	BENZENE	TOLUENE	E. BENZENE	XYLENES				
01	10 FT. DEPTH	67	<0.05	< 0.002	< 0.002	< 0.002	< 0.002				
02	8 FT. DEPTH	23	< 0.05	< 0.002	< 0.002	< 0.002	< 0.002				

5.0 SUMMARY/DISCUSSION

Analysis of the tank contents reveal a mixture of Ethylene Glycol (Antifreeze) and Waste Oil and should be disposed of in accordance with State and Federal Regulations.

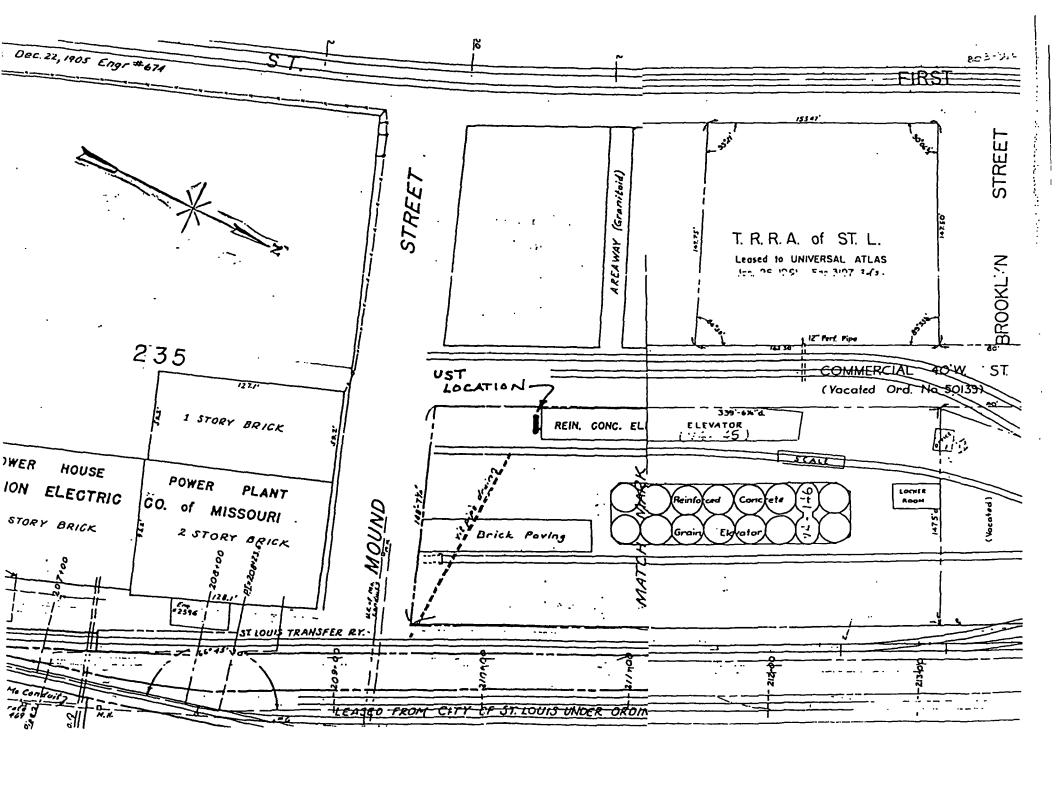
The tank is scheduled for removal the first of October, 1993. Removal will be in accordance with MDNR UST Closure Guidance.

Results of site activities suggest the tank as the source of the oil seepage into the pump station unlikely for the following reasons:

- The pump station is located topographically upgradient from the UST.
- Soil sample results are not indicative of a release sufficient to supply free product from the UST to the pump station.

GEHM # 0116 PAGE 7

ACTIVITIES REPORT TRRA, FIRST STREET SITE, ST. LOUIS, MO SEPTEMBER 1, 1993



- IR/T failed to reveal anomalies on or around the site indicative of a leak plume, trail or signature.
- Water was not present in the tank. (Given the depth to groundwater 8.5', and depth to the tank bottom, 10.5', and the extreme amount of hydrostatic pressure in the area.)

Additionally, the presence of the sheen at the groundwater/surface interface suggests a problem much more widespread than that of a single source. It is likely, the rising groundwater from the effects of the flooding in the immediate area had a direct affect on the sudden presence of the oil in the pump station.

Report Distribution List:

- Ms. Kris Davidson, Environmental Specialist
 Missouri Department of Natural Resources
 Hazardous Waste Program Superfund Section
 P.O. Box 176
 Jefferson City, Missouri 65102
- 2. Mr. Charles Gay, Fire Inspector St. Louis Fire Department Fire Prevention Bureau 1421 N. Jefferson St. Louis, Missouri 63106
- Mr Bob Ripper
 Terminal Railroad Association of St. Louis
 700 North Second Street
 St. Louis, Missouri 63102

	•								
OEPTH IN FEET	DESCRIPTION OF MATERIAL	SAMPLES	STANDARD PENETRATION RESISTANCE [ASIM D 1686] A BLOWE PER FOOT						
-			10	20 30 4	o 60				
	Black Silty Soils W/Const. Debris and Red Brick Debris to 10'								
- 5-									
	Groundwater 8.5'	ss 10'_							
-10-	Terminate Boring 10'	33 10							
			} ` '						
- 15-									
- 20-	<u>-</u>								
- 25-									
30-									
35-									
35-									
	,		s .						
		F	mental Oper	ations inc	Buring Ma.				
	CROUNDWATER DATA FACE WATER NOT ENCOUNTERED DURING DALLING	DATE: 3/5/93	PROJECT	-0: 5780	.01				
			LOGGER: GB	AUGCA: SF	⊸				
		TURFACT ELEVATION	t:	HOLLOW STCM:					

•	•					• _				
										
= 1			STANDARD PENETRATION RESISTANCE							
DEPTH IN FEET	DESCRIPTION OF MATERIAL	SAMPLES								
Ì	,				20	30		<u> </u>		
	Black Silty Soil w/Const. Debris to 3'									
 										
	Refusal 3'		}							
- 5-		1	}	•) .					
			1							
į								·		
10										
j						.•	-			
	<u>.</u>									
- 15-					ļ					
- 15-							- }			
		}								
- 20-										
							-			
							1			
- 25-		}	1				1			
- 30-					Ì					
- 35-										
		1								
		 	ــــــــــــــــــــــــــــــــــــــ		1	s las				
). a.	CACO AT FEET FACE WATER HOT ENCOUNTERED	2649 9	nmental	ه و مدود	40 (21)	14		Serme Me.		
A1	TECT AFTER HOURS	DATE: 8/5/S	03 m	GB	AUGEN!	5780 SF		.02		
AT	FEEL AFIER HOURS	SURFACE CLEVATION			_	* \$1CM;		l		

... .

.....

	,				ø				
		•			•				
OEPTH IN FEET	DESCRIPTION OF MATERIAL	SAMPLES	STANDARD PENETRATION RESISTAND						
			10	30			E0		
	Black Silty Clay to 8'								
		1	ĺ	1					
	·	SS x 208'	ł	İ					
	Terminate Boring 8'	122 2. 200	1				•		
10	-						•		
						.			
	•		`	ı	•				
- 15-						- {			
:[- [
			ı			1			
—									
- 20									
						ļ			
					•				
- 25-						ł			
		1				1			
				ı					
- 30-		1				-			
				}		İ			
- 35-]]		- }		-			
35-				1					
	•	1				1			
		1				-			
	•	1 1					į		
		1	•].	•				
	GROWOWATER DATA	Environn	nental O	peration	ons, Inc.		Boring No.		
	ALED AT 8.5 PECT FREE WATER NOT EMCOUNTERED DUAMS DRALING	DATE: 8/5/93	146461 \$1. LO	CCT MO.	5780				
	FEET AFTER HOURS DURING DIRECTIONFEET AFTER HOURS		occea: G				.03		
	• •••••	SURFACE ELEVATION:			OW \$1(M:				

and the second s

INFEET	DESCRIPTION OF MATERIAL	SAMPLES	STANDARD PENETRATION RESISTANCE [ASIM D 1596] A - BLOWE PER FOOT							
			·		20		-1 0	50		
	Brown Clay w/Rock Debris To 3'		Ì		-					
]		}					
	Refusal 3'	- 	ļ							
. 5-	-	_	ł							
					1.	•	1			
			I				1			
		ĺ	1		İ					
						•			•	
10_			}		1					
		•			1	•		•		
		1	j							
			` '							
15-			;							
					1					
_							1			
					Ì					
20-		1			1					
\neg	•		ı		1		-			
					1			•		
		1			1					
25-							İ			
		1								
\dashv					ſ					
\neg					1					
30-		1								
					İ					
		1					1			
		1			l					
35-									}	
	·]					İ		-	
									- {	
		1							- {	
		1 1	•			٠				
	GROUNDWATER DATA	Environm	nental O	pera	tion	s, Inc.		1 wing **	.]	
	CD ATFECTFACE WATER HOT ENCOUNTERED DURING DALLING	DATE: 8/5/93	Merel SI. Le		<u>. 57</u>	•		l		
	_ FEET AFTER HOURS OURSE DARLING		SGER: G		AUGCR:			.05		
	e til militar egane Militar	COMPACE CLEMATIC		~						

,

IN FEET	DESCRIPTION OF MATERIAL	SAMPLES	STANDARD PENETRATION RESISTANCE [ASIM D 1606] A BLOWE FER FOOT						
			<u> </u>		20 20	40 60			
	Brown Clay w/Const. Debris to 5'					1			
			I			1			
]			}			
			}		ľ	Ì			
. 5—	Refusal 5	- -}	1		1	}			
		}	{			}			
_		}	}		j	İ			
		1	l						
10_		1	l		(·				
		1	[1			
		1							
		}							
		1	ì			1			
15-			}						
-			}			}			
\neg						}			
20-		{				ļ			
	•	{				·			
\dashv		1							
_				- 1					
		1	i	1] -			
:5-		1		ŀ					
\dashv		1		1					
\neg		1		- }	.				
\neg				- 1	i				
<u>—</u>		{ {		- 1					
		1 1		- [
_		1							
_]]							
_]							
5-		}		}					
		j			\$				
		}				1			
					ĺ	į			
	·	[l	ł			
			•						
	GROUNDWATER DATA				tions, inc.	***** ***.			
	CO AT FEET FREC WATER NOT ENCOUNTEACD DURING DALLING	DATE: 8/5/93	1.40cci \$1. Lo	<u>., mo</u>	: 5780	—}			
	" ACCL VALCE """ HORNE		occen: GE		: 3780 ugca: SF	.06			
•••••	, FEET AFTER HOURS	SURFACE ELEVATION.			OLLOW STEM:	-1.~~ ∥			

8600 Kanis Road Little Rock, AR 72204-2322 (501) 224-5060

The Gehm Corporation (C-1270) Post Office Box 65

August 16, 1993

Boonville, MO 65233

ATTN: Mr. Daryl Bowles

Control No. 3520

Sample Description: Two (2) soil received on 8/9/93

Re: Terminal Rr Assoc. of St. Louis Mound & First Streets (Site) St. Louis, MO Project No. 0116

P.O. No. 080-693 116

Result:

Parameter	Unit	01 <u>8-4-93 0930</u>	02 <u>8-4-93 0945</u>
Total Petroleum Hydrocarbons	mg/Kg	67	23
PCB	mg/Kg	<0.05	<0.05
Benzene	mg/Kg	<0.002	<0.002
Toluene	mg/Kg	<0.002	<0.002
Ethylbenzene	mg/Kg	<0.002	<0.002
m- & p-Xylenes	mg/Kg	<0.002	<0.002
o-Xylenes	mg/Kg	<0.002	<0.002

Method:

Modified EPA 418.1, EPA 3550, 8080, 5030, 8020

Remark:

Results are presented on an as-received basis.

Enclosure: Chain of custody

AMERICAN INTERPLEX CORPORATION

MWM/tj

Michael W. McNerlin Laboratory Director

REQUEST

Submitted by: (Name/	Telephone/Deta	ol		1	Leb; (Nerne/Address/Telephone)								Clark Name/Project Location: (Consect/Phone #) TERMINAL RR ASSOC. OF ST. LOUIS				
THE GEHM	Coaroz	AT WAI		1	AMERICAN INTERPLET CORP.								IL RR A	SOC. OF	57. LOUIS		
1417 BING	HAM R	D., 20	. Box 6	5	_	BLOO KANIS RD. LITTLE ROCK, AR. 72204-2322							MOUND & FIRST STREETS (SITE)				
BOONVILLE	. Mo	652	133- OC	165	LITTL	e Ro	טב, 4	R.	7220) 4 ~ <u>Z</u>		(- / OU)	i, mo.				
DARYL B	•	_	882-3								_	306 R	PPEP	314-	539-4712		
Project No.:	·wce s	Applica	ble Regulatory	705		P.O. #	(For Leb)			Say	fologo dige	The second	1	317	221-411-		
0116		0	7143-1	LB -13.	31	08	0-6	93	116	(/)		Ma .				
Semple ID	1					1						A. Wor					
Semple ID	Metrix	Proservativa	Deta	Time	·	,				ANA	ALY	SIS REQU	EST				
					(8020)	TPH (418 t)	TPH MO.MOD	OA-1 DOWA)	OA-2 SOWA)	TOG (413.1)	PCB CONT.	OTHER	OTHER		OTHER		
	<u> </u>	Ì	<u> </u>				. (418.1)				(8080)		1				
,		~~	2 1 2 2	40							K						
101	2016	ICE	8-4-93	0930	×	<u> </u>	X	<u> </u>	<u> </u>	 -							
1 02	Soil	ICE	8-4-93	0945	- X		X				×			ĺ			
 	 	 	 		-{	 	 		<u> </u>		 		 				
ļ	<u> </u>	ļ					<u> </u>		<u> </u>								
	ļ	1	[ı	f		1								Į		
	 	<u> </u>	 		1	 	 	\vdash					 				
 	 	ļ					<u> </u>	L	ļ		<u> </u>		_				
!	1	}	}		1	l	}		1	Ì	Ì]	İ				
 	 		· ·				 	<u> </u>	 		 		 				
 	 .		<u> </u>				 					}	 				
1	i	İ	ł		ĺ		ĺ		[1	i	į .			
							<u> </u>										
	 -		 			 	├ -	 	 	 	 	<u> </u>					
		<u> </u>	<u> </u>				<u> </u>		i		l						
						[}				1					
 		 	 			 -	 	 		 	 		 	 			
<u></u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u></u>	<u>L</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	L					
COMMENTS/SPECIAL	INSTRUCTIO	NS: , /			1										·		
	مين د بيما به ۱۰۰ بيره (۱۰۰۰ مه د د د	- NO	RMAL	TURN	1 1110	UND							A				
		9.5		AX f	2	· 				-2			······································	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	······································		
			3E	<u>~~</u>	7670		10.	ربا آه	AEYL	<u> </u>	355	<u></u>					
				***************************************				O.1.	(a(2)	a. <u>=</u> _		·	,	······································	***************************************		
Refraulthed by:	00			Date:		7	ime:		Receive	l by:	7	1)	Det		Time:		
16///				1				ລ	1 0.	/		V .	ı		1		
Hart.	Her	- We	· 		6-9-		1100	<u>" </u>	10	Ma	کے زر	Marie		08-07-93	0815		
Relinquished by:				Date; (TT t	lme;		Received	i by:		-	Det (e:	Time:		
I									1 ']		

8600 Kanis Road Little Rock, AR 72204-2322 (501) 224-5060

The Gehm Corporation (C-1270) Post Office Box 65

August 20, 1993

Boonville, MO 65233

ATTN: Mr. Daryl Bowles

والروا المراكب ومعاورته ومعاورين

Control No. 3586

Sample Description: One (1) glycol/oil collected by Environmental Operations

received on 8/12/93

Re: Gehm Corp 0111

Result:

Parameter	Unit	5780	Regulatory <u>Level</u>
Ignitability .	of	Non-Ignitable below 212	-
Toxicity Characteristic Leaching Proce	edure		
Solids	%	100	-
Silver	mg/l	<0.007	5.0
Arsenic	mg/l	<0.2	5.0
Barium	mg/l	2.1	100.0
Cadmium	mg/l	0.019	1.0
Chromium	mg/l	0.0096	5.0
Mercury	mg/l	<0.01	0.2
Lead	mg/l	<0.1	5.0
Selenium	mg/l	<0.2	1.0

Method:

EPA 1010, EPA 1311 (Federal Register/Vol. 57, No. 227/November 24,

1992), 3010A, 6010A, 7470

Enclosure: Chain of custody

AMERICAN INTERPLEX CORPORATION

SL/tm

Technical Director

And the Control of the Section of the Control of th

8600 Kanis Road Little Rock, AR 72204-2322 (501) 224-5060

The Gehm Corporation (C-1270) Post Office Box 65 Boonville, MO 65233

August 20, 1993

ATTN: Mr. Daryl Bowles

Control No. 3521

Sample Description: One (1) oil/glycol received on 8/9/93 P.O. No. 050593 DB

Result:

Parameter	Unit	TANK WASTE 8-04-93 1000
Total Halides	mg/Kg	880
PCB	mg/kg	<10
Heat Content	BTU/1b	9480

Method:

EPA 9020, 600/4-81/045, ASTM D240

Remark:

As requested analysis for Toxicity Characteristic Leaching Procedure and

Flash Point was performed on additional sample referenced American

Interplex Corporation Control No. 3586. Analysis performed on oil layer

only.

Enclosure: Chain of Custody

AMERICAN INTERPLEX CORPORATION

SL/tm

Technical Director

REQUEST

Submitted by: (Name/		Lab: (Name/Address/Telephone)							Clien	Client Name/Project Location: (Contact/Phone #)							
DARYL R. BOWLES, C THE GEHM CORPORA	HMM												inal Relicoed & Mound Str	Association of	St. Louis		ij.
P.O. BOX 65												} &t, L	ouls, MO	,,,,			l
BOONVILLE, MO 652	33 (816	8) 8823486			Mr. Bob Ripper #314) 538-5198												
Project No.: 0116		Applica	ble Regulatory	No.: 07143-	KB-1331	P.O. #:	(For Lab)			5-9	plore Elen	///	7/2	/			
						1	0505	93 D&		18	Jack	U #	. Flo	well	e_)
Sample ID :::	Metrix	Preservative	Dete	Tkne						AN	ALY	SISR	EQUI				
		1]		BTEX	TPH	TPH	0A-1	BTU	рH	TOX	FLASH	PCB	TCLP	OTHER	OTHER	OTHER
)	(8020)	(418.1)	MO,MOD . (418.1)	(IOWA)	VALUE		(CHLOR	POINT (CC)	CONTENT (8080)	METALS"	[.
TANK WASTE	SLUDGE	N/A	08-04-93	1000					х		х	х	Х	Х			
ļ		 -		 	-}		 	 	<u> </u>	 	 ^- -		 ^-			 	
			ļ	ļ	_		 	 		} _		<u> </u>	ļ	ļ	 		
		1			_1		<u> </u>						<u> </u>	<u></u>		L	
		1			ı	1	1	}		1			1]			1
					1												
}		 	 	 		 	 							 			1
		 		 		 			ļ	 	 -	<u> </u>	 	 	 		
		<u> </u>			_	<u> </u>	ļ		ļ	<u> </u>							
		1	Ì	1	ł	ļ							ļ	Ì		ŀ	
			i							i							
		 	 		_	-	 	 		 	 	 		 	 	 	+
		 	 	 			}	 -	}	}	├	 	 -	 	 	 	 -
		 				 	<u> </u>				 	 _	 	}	<u> </u>	<u> </u>	
	ļ	1		<u> </u>		<u> </u>	<u> </u>			<u> </u>	1		<u> </u>	<u>] </u>	<u></u>		
COMMENTS/SPECIAL						_===											
. WETALS INCLUDED	ARE: ARSEN	IC, BANUM, C	ADMIUM, CH	ROMIUM, LEAI	D, MERCURY	. SEUMU	M, SILVER.	**********	***************************************	bot pu boccoar*	***************************************		****************	,. ,,	949692939997477 C06221VV		
PLEASE FAX RESULT	TO: 818-51	B2-6766		***************************************	,	,,,,,,,,,,,,,	************		**********	***********	•				på od aa aqqqa på baaq ₁ 9 s ss		***********************
7 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -		***********************	. 10 budaek a <i>t</i> erango en ca	PPG 5 5 F B G G G G G G G G G G G G G G G G G G							**********	, PE 000 000 000 0 700 0 7		Caped #811 Dono Do p + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +			** > > > = = = = = = = = = = = = = = = =
Reprogrammed by:			1	Date			kne:		Received	by:	1/	11.			Date:	, Tin	ne;
Last K	. Do	uls		8-	6-95		1100)	12	late	hu	Lin	<u></u>		08-0	7-97	0915
Relinquistant by:				Date	:	ı,	lme:		Received	i by:					Date:	Thr	10;
															<u> </u>		

	-		•	<u>_</u>	· / ^ /	- 7
CUSTODY TRANSFER RECORD/LA	RORA	TORV	WORK	EOHECT	_	•
040, +44		· ; O · · · ,	ז.אעקעויי	IEGUESI		

	CUCTODY TRANSFER RECORD// ADORATODY WO	L-111424-5060:
;	CUSTODY TRANSFER RECORD/LABORATORY WOJ	BK REQUEST
	~ 5.410 Days 1 ~ 6.2	Party Party
	ADDRESS 204 9 POS POLICIO 2 DATE 8 11 - 9 3 P.O. NO CITY/STATE/ZIP 5 7 LOVI 5 MO 6 31/8 DUE DATE	AICCN 3580.
	PHONE (3/4) 771-8442 FAX ()	

SPECIAL INSTRUCTIONS: ATTAL. Krista

Reference: Gehm Carp. Goc. # 0111										A	NA	LYS	ES	RE	QUEST	ED	
SAMPLE IDENTIFICATION								73	4	7	7	7	7	7	.//		
ITEM	LAB NO.	SITE CODE/ SAMPLE DESCRIPTION	DATE COLLECTED	PRESERV.	CONTAINER	ر الا			/,	//	//	//	//	/ /.	// (СОММ	ENTS
1	U	70% 6 Lycof waste	8-11-93		6Lass3202	X	X										
1,2	<u> </u>				 												
3		-												}		3	
4											T		Γ				·····
5																:	
6																<u>;</u>	
7																1-	
8									\top		T		-			1	
9																	
10											Τ.						
11																8 1/4	
12													1.			·:	
13						;					\prod						
14				:												i ,	
15		· 10	1,		. `			\cdot							T .		
16										\perp							

ITEMS TH	RANSFERRED	RELINQUI	SHED BY	Date	Time	RECEIVED BY	Date	Time	REASO	N for TRANSFER
	**					,				
,		•	4.4	<u> </u>						۸
						•				<i>\</i> 1.\
				2/		Showell fre	8/1/1	C Ba)	

1417 Bingham Road Post Office Box 65 Boonville, MO 65233

816-882-3485 816-882-5766 (Fax)

October 26, 1993

Ms. Kris Davidson, Environmental Specialist Missouri Department of Natural Resources Hazardous Waste Program - Superfund Section P.O. Box 176 Jefferson City, Missouri 65102

RE: UST Removal Closure Report

Dear Ms. Davidson,

We are submitting the enclosed report on behalf of Terminal Railroad Association (TRRA) of St. Louis. The report contains soil sample analysis results as requested by TRRA. I hope you find this information useful in your investigation of the area.

Should you have any questions regarding this report or require additional information, please call me at (816) 882-3485.

Sincerely,

Daryl R. Bowles, CHMM

Director,

Environmental Field Services

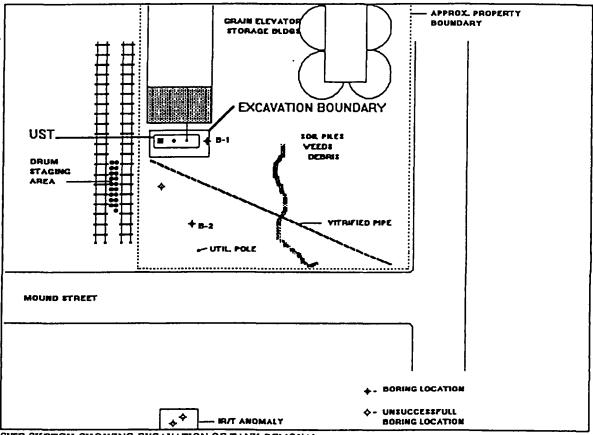
cc: Mr Bob Ripper

Terminal Railroad Association of St. Louis

700 North Second Street St. Louis, Missouri 63102 RECEIVE

ncT 28 1993

HAZARDOUS WASTE PROGRAM MISSOURI DEPARTMENT OF NATURAL RESOURCES


UST CLOSURE REPORT

for Terminal Railroad Association

OWNER/FACILITY INFORMATION:

Facility Name:	NONE	UT# N/A	
Address First	& Mound Streets		
County St. Louis	City	St. Louis, MO	Zip Code 63102
Telephone/Contact (314) 539-4712	Mr. Bob Ripper	
Date of Tank Remova	l Octobe	er 11, 1993	

SITE SKETCH SHOWING EXCAVATION OF TANK REMOVAL.

PROJECT SYNOPSIS

This underground storage tank removal project is a result of the discovery of oils seeping into a pump station operated by Metropolitan Sewer District (MSD) in St. Louis, Missouri. On July 14, 1993, MSD reported this situation to the MDNR. MSD analytical information revealed PCB levels of less than 50 ppm in the oils seeping into the pump station. Additionally, a sample was obtained from waste oil contained in an underground storage tank present in the area, and owned by Terminal Railroad Association of St. Louis (TRRA). The St. Louis Fire Department (SLFD) notified TRRA on July 28, 1993 and requested the contents of the tank be removed. TRRA was unaware of the existence of the tank prior to notification by the SLFD.

In response to the situation, TRRA initiated and completed the following tasks:

- Contents of the tank were removed on August 4, 1993. The tank was completely cleaned and freed of all liquids. The material was containerized onsite in 55 gallon drums for characterization and disposal.
- An Infrared Thermographic Survey was conducted of the area in an attempt to characterize leak plumes or trails.
- Three borings were advanced in the immediate area to determine subsurface soil conditions. Two soil samples were obtained from the site and submitted to a qualified laboratory for chemical analysis.

The results of these efforts are documented in an ACTIVITIES REPORT dated Setember 1, 1993 which documents the response efforts and findings of the investigatory activities.

This UST had no record of registration with the Missouri Department of Natural Resources. TRRA indicated no knowlege of the existence of the tank prior to notification by the SLFD. The UST removal project included removal of the soil overburden, removal of the tank, obtaining samples of the soils below the tank, on the down gradient wall and of the soil pile, disposal of the tank as scrap metal, and backfilling the excavation.

1.0 SAMPLE RESULTS

Soil sampling for this UST removal project included sampling below the tank and the down gradient wall. Additionally, one composite sample of excavated soil was obtained.

	SAMPLE RESULTS SUMMARY TABLE (in ppm)											
I.D	LOCATION	ТРН	BENZENE	TOLUENE	E. BENZENE	XYLENES	PCB's					
PIT	FROM BELOW TANK, 2 COMPOSITE POINTS AT EACH END, OF NATIVE SOIL, 12FT. DEPTH	<5	< 0.002	< 0.002	<0.002	< 0.004	<.05					
DGW	FROM DOWN GRADIENT WALL (EAST WALL), 10.5 FT. DEPTH	< 5	< 0.002	< 0.002	< 0.002	< 0.004	< .05					
SP	FROM FOUR COMPOSITE POINTS OF THE EXCAVATED SOILS	66	< 0.002	0.002	0.002	0.004	<.05					

2.0 LOCATION OF LINES AND UTILITIES

Underground lines or utilities were not discovered in the immediate area during excavation activities. However, an area drawing supplied by TRRA denotes a vitrified pipe extending across the site. (See Sketch Section 5.0)

3.0 FORMER LOCATIONS OF TANK(S)

One 10,000 gallon tank was located at the south end of the eastern most building on the property. The tank overburden consisted of grass and soil. The product line extended north from the tank approximately 10 feet and entered the building through a concrete wall at ground elevation.

4.0 DEPTH & SIZE OF TANK

Tank capacity was 10,000 gallons. Dimensions were 10.5 ft. diameter by 18.5 ft long. The top of the tank was exposed at grade elevation.

GEHM #0119 Page 3

5.0 EXCAVATION BOUNDARIES

The excavation was limited to that necessary for tank removal. This excavation extended approximately 4 feet beyond the outer limits of the tank to a depth of 12 feet. Final dimensions of the tank pit excavation was 16 ft wide, 25 feet long and 12 feet deep.

6.0 ABOVE GROUND TANKS & PIPING

There were no above ground tank systems at this site.

7.0 DISTANCE TO WELLS, STREAMS, AND LAKES.

There were no private drinking water wells, or lakes within .5 miles of the tank location. The site is adjacent to the Mississippi River approximately 1,000 feet to the east.


8.0 SOILS DESCRIPTION

Soils encountererd was black junk fill with cinders to a depth of 12 feet. Below, native soils consisted of typical river sands/silts.

GEHM #0119 Page 4

9.0 PHOTOGRAPHS

PBOTO #1: NORTH EAST MEW SHOWING TANK AT BEGINNING OF EXCAVATION.

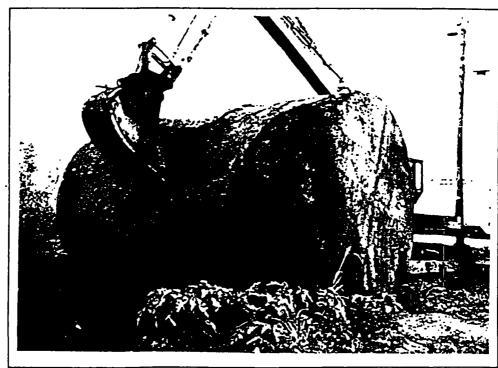


PHOTO #2: BOTTOM AND END OF TANK AFTER REMOVAL.

PHOTO #3: BOTTOM OF PIT AND EAST END OF EXCAVATION.

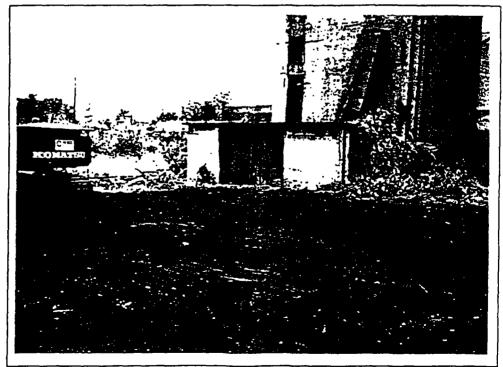


PHOTO #4: SITE CONDITION AT COMPLETION.

. .

11.0 DESCRIPTION OF RESIDUAL CONTAMINATION

Based on odor and appearance, no contaminated media was observed during tank removal operations.

12.0 AMOUNT OF EXCAVATED SOILS

Approximately 30 cubic yards of soil was removed in efforts to remove the tank and affected soils.

13.0 SLUDGE IN TANKS

The tank had previously been emptied of all contents and cleaned. Fifteen drums of Waste Oil/ethylene glycol sludge/liquid was generated for disposal.

15.0 DISPOSAL OF TANK CONTENTS

Tank contents is currently awaiting acceptance for disposal by a licensed and permitted disposal company.

16.0 DISPOSAL OF TANK(S)

The tank was transported to, and disposed of through scrap metal recycling at Grossman Iron & Steel Company, St. Louis, MO.

17.0 FORMER CONTENTS OF TANK(S)

TRRA indicated the tank originally was used to store Fuel Oil.

18.0 DEPTH OF GROUNDWATER

After tank removal, a small amount of water was present in the tank pit area estimated at < 50 gallons. This water was absorbed into the loose soils in the pit during subsequent excavation activities. No other water accumulated or was encountered.

GEHM #0119 Page 7

8600 Kanis Road Little Rock, AR 72204-2322 (501) 224-5060

The Gehm Corporation (C-1270) Post Office Box 65

October 19, 1993

Boonville, MO 65233

ATTN: Mr. Daryl Bowles

Control No. 4528

Sample Description: Three (3) soil received on 10/13/93

Re: Terminal Railroad Assn. 0119

P.O. No. 101-293 0119

Result:

<u>Parameter</u>	Unit	Pit 10-11-93 <u>1020</u>	DGW 10-11-93 . <u>1022</u>	SP 10-11-93 <u>1025</u>
Total Recoverable Petroleum Hydrocarbons PCB Benzene	mg/Kg	<5	<5	66
	mg/Kg	<0.05	<0.05	<0.05
	mg/Kg	<0.002	<0.002	<0.002
Toluene Ethylbenzene m- & p-Xylenes	mg/Kg	<0.002	<0.002	<0.002
	mg/Kg	<0.002	<0.002	<0.002
	mg/Kg	<0.002	<0.002	<0.002
o-Xvlene	mq/Kq	<0.002	<0.002	<0.002

Method:

Modified EPA 418.1, EPA 3550, 8080, 5030A, 8020

Remark:

Results are presented on an as-received basis.

Enclosure: Chain of Custody

AMERICAN INTERPLEX CORPORATION

MWM/tj

Technical Director

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

8	Submitted by: (Heme/				L	b: (Hemal	Address/To	dephone)			-			Hent Hame	Project L	contest (Con	tect/Phone	л ,	
	THE GEHM	1 Cori	PORATI	المه		4 mei	EICAN	INTE	==PLE	y Co	aP.			IGEM	IMAI	- RAIL	-ROAD	ASSK	•
ŀ	1417 BINGH	AM RO,	, P.O. 8	Sox 65	1.6	2600	KANI	s Ro.	_					FIRST	& N	Jours	STR	cets	· ·
į.	BOONVILLE,	10	65233	3	14	ITTLE	Roc	k, Ai	2 72	204			١.	<- 1 i	٠٠١٤.	\sim			
Ŋ	DAZYL BOL	عادد ح	816-	882-34	85	501-	224 -	5060	>		/	\bigcap		Bob	Book	PER	314-	<u> 539-</u>	4712
Ĭ	Project No.:		Аррііс	bie Regulatory	No.:			(For Lab)			J-my	Aers/Slay	Augo:		Z				
ľ	0119			N/A			10	1-29	5 6	9/19	IV.	Low	1	1.0	/	lu			
	Sample ID	Metrix	Preservative	Date		1					ANA	LY	SIS	REQ	UES	S T			
						#TEX	TPH	MO MOD	OAS	OA-2	тос	PC8		тынго		ОТНВ	A P		OTHER
JY.			Selsin,	132.3	8.2.8	(8020)	(418.11	MO MOD (418-1)	DOWAL	DOWAL	(413.1)	CONT.							
1	PIT	Soil	TCE	10-11-93	1020	×		×				Х		•	}		_		
17	DGW	501L				×		×				х.							
				10-11-93		 ^						<u> </u>	 						
	SP	SOIL	ICE	10-11-93	1025	×		×			·	_X_							
			ļ			ŧ							}		1				
			<u> </u>	 		╂							 						
	L		ļ			-							<u> </u>						
			ł	/		1	ļ						•						
						1													
		<u> </u>		ļ	<u> </u>	[-						;		 -				
		<u> </u>				ł								· ———	-			 -	
			<u> </u>	<u> </u>										<u> </u>				! _	
																•			
		 	 	 		1	 	 					-						
	J	 	 	{	 	-	 		 		\vdash		-					 	
	L	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u></u>	<u></u>	<u> </u>	<u> </u>					<u> </u>	
	COMMENTS/SPECIAL	INSTRUCTION	NS;		•			· · .			:	• :	Š.	÷					
	<u> </u>	······································	······································				,-					····	99.5 (3)	***					•
								•					33						
					<u> </u>	;													
			-,	9	/ ========													· · ·	
	Politographic by	DZ		,	Deta;			me;		Received	by:	•	-	,	•		eta:		Time:
	Harl 1	Side	les		/0	-12-	93	1000)			•	. :						
	Relinquigned by:				Dete:			me:		Received	gar	N	1				10/13/93		Time: e 1030
,	fl						L			1 200	ane	-HH	me				110		

Petroleum Fuel & Terminal Foot of Mullanphy Street St. Louis, Missouri 63102 (314) 621-0522

Charles Gay
Fire Inspector
Fire Prevention Bureau
1421 North Jefferson
St. Louis, Missouri 63100

Lear Mr. Gay

Per our conversation on September 3, 1993. We discovered the leak during our yearly hydro teasting of our pipe lines/hoses. When me experienced a loss of 25# lb of pressure.

We then started to isolate the most likly place and this would be in the expansion joint at the sea wall. After excavating the site we then found a small pen hole in a 6 inch pipe line. After making the necessary repairs we decided to take this pipe line out of service.

We recovered 2 1/2 bbis of cil/soil to be disposed of. If you feel the need to contact me on this mater please feel free to do so at (314) 621-0522.

Thank you

Randel H. Lewis
Terminal Manager

He 9/22/93

Post-It brand fax transmitta	лето 7671 [s. t.
Co. Flo DACO EUMONO	Carrier line
Dept.	Co. Phone #
Fax #	Fax
	-

MSD ENVIRONMENTAL COMPLIANCE LABORATORY INSTRUMENTATION ANALYSIS

_ab. No	70	_ Sample Sou	rce: _	Wet Well		·	Da	te Received <u>7-9-93</u>
ample Date	7-8-93	Time:			□ Gr	ab 🗆 Com		ected by:
(IR □ GC	C LEL	□ RAD □	luv	☐ FLUOR ☐	TLC	<u> </u>		
Priority Po		mg/L	(except as noted)			BASE/NEUTRALS: (Cont'd) hexachiorocyclopentadiene
VOLATILE acrolein	<u>:5:</u>			ACIDS: (Cont'd)				hexachloroethane indeno (1.2,3-cd) pyrene
acrylonitnie			_	2-nitrophenol			=	Isophorone
benzene bromodichlor	omethane	. 	_	4-nitrophenol pentachlorophenol				naphthalene nitrobenzene
bromoform				phenol			_	N-nitrosodimethylamine
carbon tetraci				2,4,6-trichtorophenol				N-nitrosodi-n-propylamine N-nitrosodiphenylamine
chlorobenzen	•			BASE/NEUTRALS			_	phenanthrene
chloroethune 2-chloroethyl			_	acenaphthene acenaphthylene			_	2,3,7,8-letrachlorodibenzo-p-dioxin
chloroform			=	anthracens				1.2,4-trichlorobenzene
chloromethan				benzidine benzo(a)anthracene				PESTICIDES:
1,2-dichlorobe	enzene		=	benzo(a)pyrene				aldnn
1,3-dichlorobe				benzo (b) fluoranthene benzo (q.h.i) perylene	. 		_	alpha-BHC beta-BHC
. 1,1-dichloroet	hane			benzo (k) fluoranthene				gamma-BHC
1,2-dichloroet 1,1-dichloroet				bis (2-chloroethoxy) meth bis (2-chloroethyl) ether	ane		, 1.	detta-BHC chiordane
trans-1, 2-dici	hioroethene			bis (2-chloroisopropyl) ett			_	4,4'-DOD
1,2-dichloropr 1, 3-dichlorop				bis (2-ethylhexyl) phthalal 4-bromophenyl phenyl eth				4.4-DDE
1, 3-dichlorop	ropene, trans		_	butyl benzyl phthalate				dieldrin
ethyl benzene methylene chi				2-chloronaphthalene 4-chlorophenyl phenyl eth	201		-	alpha-endosulfan beta-endosulfan
1,1,2,2-tetrach			_	chrysene	<u></u>		_	endousulfan sulfate
tetrachloroeth toluene	ene			dibenzo (a.h) anthracene 3.3-dichlorobenzidine				endrin aldehyde
1,1,1-trichioro	ethane			diethyl phthalate				heptachlor epoxide
1,1,2-trichloro				dimethyl phthalate			_	heptachlor
trichloroethen vinyl chloride			_	di-n-butyl phthalate			X	PC8-1016
ACIDS:	• • • •		_	2.4-dinitrotoluene			文	PC8-1221 · · · · · · · · · · · · · · · · · ·
4-chloro-3-me	thylphenol		_	2,6-dinitrotoluene 1,2-diphenylhydrazine			<u>*</u>	PCB-1242
2-chloropheno				fluoranthene			₹	PCB-1248
2.4-dichloroph 2.4-dimethylph		 ·		fluorene hexachiorobenzene			-	PCB-1280 Z1.0
4, 6-dinitro-2-	methylphenol			hexachlorobutadiene			=	toxaphene
Gas Chrom	natography re	suits:						
				······································				
Thin-Layer	Chromatogra	ıphy results: _		A	×	Appearance:	_D ₉	rk oil
Infrared C-	ootroine /			£10.05= ±.0+	X	Odos	2 a Cc	line
inirareo Sp	ectroscopy (a	i) methods uti	mzea:	Strong				J. N.E.
(b) results:			let-	Moderate				
·	1380	<u> </u>	elet-	Moderate	u	Solubilities.		
. ———						Distillation B	ance.	
Ultraviolet/	Visible Spectr	roscopy result	ks:	<u></u>				
					_	i idali Fullit.		
, Special Tes	sts: (specify)	Deveil	(((1	07-N-0:1" P	CB	Ce Peaulina	Ki+	1/50 Dilution > 500
	Infrar				<u>-14_</u>	14. # U4	۲۲. ۲۲۰۰	and #270 ace
Simila			110		<u>~~p</u>	14 47		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	7 3		······	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
				·				
								
					~1	9/93		1000
	•			•••		9 14 2		The Table Aldrew No.

64-130WW

MSD ENVIRONMENTAL COMPLIANCE LABORATORY INSTRUMENTATION ANALYSIS

大学の大学、1、日本の大学に大学に大学に大学によっています。 これからないない ないない かいま から かいかいかん かいかい かいかい かいかい かいかん かいかい かんかん

mple Date	····	XG	rab 🛚 Comp	Coll	ected by:	
IR X GC LEL RAD	O UV O	FLUOR TLC			·	
Priority Pollutant m	g/L (exc	ept as noted)			BASE/NEUTRALS: (Cont	'd)
VOLATILES:		DS: (Cont'd)	•	_	hexachlorocyclopentadiene hexachloroethane	
acrolein	2.4-d	nitrophenol			indeno (1,2,3-cd) pyrene	
acrylonitrile		ophenol		_	naphthalene	
bromodichloromethane		chlorophenol		_	nitrobenzene	
bromoform	pheno	ol .			N-n:trosodimethylamine	
bromomethane	2.4.6-	trichlorophenol			N-nitrosodi-n-propylamine N-nitrosodiphenylamine	
carbon tetrachloride	— □ BAS	E/NEUTRALS			phenanthrene	
chloroethane		phthene		_	pyrene	
2-chloroethyl vinyl ether chloroform	—	scene			2.3.7.8-tetrachiorodibenzo-p-dioxin 1,2,4-trichiorobenzene	
chloromethane	benzi			_		
dibromochioromethane		(a)anthracene			PESTICIDES:	
1.2-dichlorobenzene		o(a)pyrene o (b) fluoranthene			aldrin alpha-BHC	
1,4-dichiorobenzene		(q,h,i) perylene			beta-BHC	
1,1-dichloroethane -		(k) fluoranthene			gamma-BHC delta-BHC	
1.2-dichloroethane 1.1-dichloroethane		-chloroethoxy) methane -chloroethyl) ether		_	chlordane	
trans-1, 2-dichloroethene		-chloroisopropyl) ether		_	4.4'-DDD	
1,2-dichloropropane		-ethylhexyl) phthalate			4,4-DDE 4,4-DDT	
1, 3-dichloropropene, cis 1, 3-dichloropropene, trans		mophenyi phenyi ether benzyi phthalate		_	dieldrin	<u> </u>
ethyl benzene	2-chic	pronaphthalene		_	alpha-endosulfan	
methylene chloride	4-chic	prophenyl phenyl ether		_	beta-endosulfan endousulfan sulfate	
1,1,2,2-tetrachioroethane tetrachioroethene		zo (a,h) anthracene		-	endrin	
toluene	3,3-4	chlorobenzidine		=	endnn aldehyde	
1,1,1-tnchloroethane		ri phthalate hyl phthalate			heptachlor epoxide heptachlor	
1,1,2-trichloroethane trichloroethane		outyl phthalate			napacino.	
vinyl chloride		ctyl phthalale		*	PCB-1016	Z1.0
ACIDS:		nitrotoluene nitrotoluene		4	PC8-1221 PC8-1232	41.0
4-chloro-3-methylphenol		phenylhydrazine		- 《	PC8-1242	21.0
2-chlorophenol		nthene			PCB-1246	41.0
2.4-dichlorophenol 2.4-dimethylphenol	fluore	ne hiorobenzene		-	PC8-1254 PC8-1260	39.0
4, 6-dinitro-2-methylphenol		hiorobutadiene			toxaphene	
Gas Chromatography results:						
Thin-Layer Chromatography resu	ılts:		Appearance:	0	ark eil	
		×	04==		sline d. Oil	
Infrared Spectroscopy (a) metho	بدکے :ds utilized	- 1 -				
(b) results: 1460 - M	- de 4 d 2 - < 1	bulet D	API Gravity:			
	= de ca1e - 5		Solubilities:			
			Distillation P.			
Ultraviolet/Visible Spectroscopy	results:			_	_	
			Flash Point:			
						
Special Tests: (specify)	•				•	
	pectra	on Sump	Hes H 43	3 4	and #270 a	~~
<u> </u>	·					
	_	_				
<u> </u>		_				
					· · · · · · · · · · · · · · · · · · ·	^

MSD ENVIRONMENTAL COMPLIANCE LABORATORY

Reference 13

	SPECIAL SAMPLE	FORM	<u>(i)</u>
Lab. No. 886	Comp CGrab	Date Received	8/9/93
Sample Date 8/9/	9.3 Sample	Time: OPY5	to
Requested by:		Collected by:	
	H # MH12 F-	ுக்கு அதிக்கார். இருக்கு இருக்கு இருக்கு இருக்கு இருக்கு இருக்கு இருக்கு இருக்கு இருக்கு இருக்கு இருக்கு இருக்	
	XT TO FLOOD WALL +	BAUCCAMPAY	
	DETERMINE IF PCB	's PRESENT	1.
☐ Trunk ☐ Sanitary	Stream Storm	☐ Seepage ☐ STP	☐ Hauler
☐ Industry ☐ Other (e)	plain)		
Analysis: except as noted	□ mg/L □ ug/L □ mg/k	sg □ % comp □ ot	her
□ pH	(units)	D Hg	· · · <u></u>
□ SPC	(umhos/cm)		· · · · · · · · · · · · · · · · · · ·
□ ALK	CN	Da.	
□ ACI	CNA	D Be	
□ TS	D KJN	Cd	
□ ss	D NH ₃		
□ vss	DNO3	Cu	
□ %V	NO ₂		· · · · · · · · · · · · · · · · · · ·
□ SET	(ml/L)	D Pb	
☐ GRE	ПРНО		
□ BOD	so ₄	🗆 Se	
□ COD	so ₃		
□ TOC	OS		·
☐ PHE	_ □ SUR _	, O TI	 .
		🗆 Sb	
O			
<u> </u>			
□ Color:	Cr ⁺⁸		
□ Odor:		D Tot. Hardness _	<u>. </u>
☐ Appearance:			
Organics IR	GC LEL RAD	UV FLUOR	X 1D
Biological:	Bioassay:	Total Coli:	No./100ml
Π.	Microscopic:	Fecal Coli: FecalStrep:	No./100ml
111504 50			No./100ml
Remarks: CHECK FO	IR PCB'S		
	Date Transmitted: 8//	7/93 by:	MARIO J. DEPRIM

MSD ENVIRONMENTAL COMPLIANCE LABORATORY INSTRUMENTATION ANALYSIS

IR XI-GC D LEL D RA	D 🗆 UV 🗀 FLUOR	□ TLC				
Priority Poliutant n	ng/L (except as not	ted)			BASE/NEUTRALS: ((Cont'd)
VOLATILES:	ACIDS: (Conf	'd)	•	_	hexachiorocyclopentadiene hexachioroethane	
acrolein acrylonitrile	2,4-dinitrophenol 2-nitrophenol		: 	_	indeno (1.2,3-cd) pyrene isophorone	<u> </u>
benzene Z).	4-nitrophenol pentachlorophenol				naphthalene nitrobenzene	
bromoform	phenol .			_	N-nitrosodimethylamine	-
carbon tetrachloride	2,4,6-trichlorophenol	 -	·	=	N-nitrosodi-n-propylamine N-nitrosodiphenylamine	
chloroethane	BASE/NEUTRA	LS		-	phenanthrene pyrene	
2-chloroethyl vinyl ether	acenaphthylene			_	2,3,7,8-tetrachlorodibenzo-p-	dioxin .
chloroform chloromethane	anthracene benzidine			<u> </u>	1.2.4-trichlorobenzene PESTICIDES:	
dibromochloromethane	benzo(a)anthracene benzo(a)pyrene			<u>.</u>	aldrin	
1,3-dichlorobenzene	benzo (b) fluoranther benzo (g.h.i) peryleni			_	alpha-BHC beta-BHC	
1,4-dichlorobenzene 1,1-dichloroethane	benzo (k) fluoranther	18		_	gamma-BHC	
1.2-dichloroethane	bis (2-chloroethoxy) bis (2-chloroethyl) et			÷	delta-BHC chlordane	
trans-1, 2-dichloroethene	bis (2-chloroisopropy bis (2-ethylhexyl) phi			_	4,4-DDE	
1,2-dichioropropene 1, 3-dichioropropene, cis	4-bromophenyi phen	yl ether		_	4,4-DDT	
1, 3-dichloropropene, trans ethyl benzene 3,7.	butyl benzyl phthalate 2-chloronaphthalene				dieldrin alpha-endosulfan	
methylene chloride 1,1,2,2-tetrachloroethane	4-chlorophenyl phen chrysene	ether		_	beta-endosulfan endousulfan sulfate	
tetrachloroethene	dibenzo (a,h) anthrac				endrin	
1,1,1-trichloroethane	3.3-dichlorobenzidine diethyl phthalate	<u> </u>			endrin aldehyde heptachlor epoxida	
1,1,2-trichloroethane trichloroethane	dimethyl phthalate			=	heptachlor	
vinyl chloride	di-n-octyl phthalate			区	PCB-1016	
ACIDS:	2,4-dinitrotoluene 2,6-dinitrotoluene			Ż	PCB-1221 PCB-1232	= $=$
4-chloro-3-methylphenol 2-chlorophenol	1.2-diphenylhydrazine fluoranthene	·		- \	PCB-1242 PCB-1248	—
2,4-dichlorophenol	fluorene . hexachlorobenzene			三	PCB-1254 PCB-1260	751
2,4-dimethylphenol 4, 6-dinitro-2-methylphenol	hexachlorobutadiene			<u> </u>	toxaphene	<u></u>
Gas Chromatography results: _	Rin M	eth.	-d 20:	<u> </u>	on Voktil	
Thin-Layer Chromatography res	sults:	<u> - </u>	Appearance	:		
Infrared Spectroscopy (a) meth	ods utilized: Smcox +	 ;+	Odor:			
						
(b) results: 1910 c	- T-101e+- Strum - Si-01e+- Million	<u> </u>	_			
13501-	- Sindict - Maderite	<u> </u>			 	
	- Similar - Fluderal	<u> </u>	Distillation F	iange:		
Ultraviolet/Visible Spectroscopy results:		— <u> </u>		_		
			·			
Special Tests: (specify)				,		
clusions Path In	-rared spectra		d GC	FID	resevolate	e Die

MSD ENVIRONMENTAL COMPLIANCE LABORATORY SPECIAL SAMPLE FORM

Lab. No.	787	Co	mo B Grah	Date Rec	eived	8/9/93
Sample Date	8/9	/43.		rime:		
Requested by:		DMOND.	1. 34 30 30 30 30 30 30 30 30 30 30 30 30 30	Collected by:	SAN	1E
		- 1. A. S. S. S. S.	13 F-6		Truck No.	All and the second of the seco
Sample Source:	40.5		VALL AT M		<u> </u>	and the second
Sampling Locatio			IF PCB			A A
Reason for sampl			Storm			∏ Hauler
☐ Industry	Other (exp					
	1. Let	over "A State of the St				
Analysis: excel		□ mg/L □	ug/L 🔲 mg/k	g □ % comp	. □. o	ther
□рн		_(units)	□ F		□ Hg	
□ SPC		_(umhos/cm)	□ cı		□ As	
O ALK	<u> </u>	_	□ CN		□ Ba	
□ ACI	a viv	_	CNA		□ Be	
□ TS _	· · · · · · · · · · · · · · · · · · ·	<u>.</u> .	□ KJN		□ Cd	 .
🗆 ss 💄	<u> </u>		□ NH ₃		□ Cr	
U vss	· 	<u>.</u>	□ NO ₃	······································	□ Cu	· · · · · · · · · · · · · · · · · · ·
□ %V _	·	- ·	□ NO,		□ Fe	· .
□ SET _	· · ·	_(mi/L)	PHT.		□ РЬ	
□ GRE	·	• •	□ PHO		□ Ni	
□ BOD _		· ·	□ so,	<u></u>	□ Se	
□ COD _		- ,	□ so ₃		□ Ag	
□ TOC _	· : 	· . -	□s		□ Zn	· · · · · · · · · · · · · · · · · · ·
□ PHE _		<u>.</u>	□ SUR		וד ם	
	• •	-	-		□ Sb	· · · · · ·
o		-	-	· · ·	<u> </u>	
o	•		o	·	<u> </u>	 '
Color:	·		□ Cr ⁺⁸	·		
Odor:				🗆 1	ot. Hardness	
☐ Appearance):	·.			ot. Chlorine _	
Organics	IR	GC [LEL RAD		FLUOR	ID
Biologica	1: .	Bioassay	' :	Total Co	oli:	No./100m
	•	П.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			oli:	No./100m
		Microsco	blc:	FecalSt:	rep:	No./100m
Remarks:CH	will FOR	PCB'S				
<u> </u>				,		
			8/	7/62		MANDEDAIN

ab No. 887 Sa	mple Source: Manhule	F-61	<u>(1 (±15)</u>	Date Rece	ved: <u>%/9/</u> 9	13
Sample Date 8/9/13 T	ime: <u>0835</u>	_ X Gra	b 🛭 Comp	Collected b	/	
IR KI GC DLEL DI	RAD UV D FLUOR	□ TLC	<u> </u>		機工學	
Priority Pollutant	mg/L (except as n	oted)		· · ·	EUTRALS: (Co	ontd)
VOLATILES:	ACIDS: (Co	nťd)	•	hexachlor	pethane 2,3-cd) pyrene	-
acrolein acrylonitrile	2-nitrophenol			isophoron		
benzene ∠ bromodichloromethane	4-nitrophenol		· · · · · · · · · · · · · · · · · · ·	naphthale		
bromalarm .	phenol				limethylamine k-n-propylamine	<u> </u>
bromomethane carbon tetrachloride	2.4,6-tnchlorophen			N-nitrosoc	iphenylamine	
chloroethane	* acenaphthene	ALS	<u> </u>	phenanthr	ene	
2-chloroethyl vinyl ether chloroform	acenaphthylene anthracene	<u> </u>			achlorodibenzo-p-dio orobenzene	xin
chloromethane	benzidine			□ PESTIC		
dibromochioromethane 1,2-dichiorobenzene	benzo(a)anthracen benzo(a)pyrene			- aldrin	<u> </u>	<u> </u>
1,3-dichlorobenzene 1,4-dichlorobenzene	benzo (b) fluoranti benzo (q,h,i) peryle		 .	alpha-BHC		
1;1-dichloroethane	benzo (k) fluoranti	hene		gamma-8i delta-8HC		
1,2-dichloroethane	bis (2-chloroethyl)	ether		chlordane		
trans-1, 2-dichioroethene 1,2-dichioropropane	bis (2-chloroisopro			4,4-DDD 4,4-DDE		- -
1, 3-dichloropropene, cis 1, 3-dichloropropene, trans	4-bromophenyl phe butyl benzyl phths	enyl ether		4,4-DDT dieldrin		<u>·</u>
ethyl benzene	2-chloronaphthaler	ne		alpha-end beta-endo		
methylene chloride 1,1,2,2-tetrachloroethane	- 4-chlorophenyl pho	enyi ether		endousuif		
tetrachloroethene	dibenzo (a,h) anthe			endrin ald	ehyde	
1,1,1-trichioroethane	diethyl phthalate			heptachlo heptachlo		
1,1,2-trichloroethane trichloroethane	dimethyl phthalate di-n-butyl phthalate					
vinyl chloride	di-n-octyl phthalate	<u>e</u>		Y PCB-1016 PCB-1221		21.3
ACIDS: 4-chloro-3-methylphenol	2,6-dinitrotoluene 1,2-diphenylhydraz			PCB-1232 PCB-1242		
2-chlorophenol	fluoranthene			X PCB-1248		410
2,4-dichlorophenol 2,4-dimethylphenol	fluorene hexachiorobenzene			PCB-1254		- -
4, 5-dinitro-2-methylphenol	hexachlorobutadie	ne		toxaphene		
Gas Chromatography results	Run Mc+	hed	203 c~	Volati	145	
GUF	1) Yesembles	وي و زوا	I -vel	·		
Thin-Layer Chromatography		П				
	results		Appearance.		······································	
<u> </u>						
Infrared Spectroscopy (a) m	ethods utilized: 5 + - ea c +					
(b) results: 1720 cs.						
1460 0	- M. dernte - Simble+		Solubilities:			
1590 200	- N.=devate- 3. Lila	<u> </u>				
Ultraviolet/Visible Spectrosco	ony regulte:			٠,		
	opy resurts					
Special Tests: (specify)		- 				
nclusions Infrara	d spectru an	4 60	/ 1=10 r	ecemble	Diece	1 /- ve
						
3,		-				
م	Date Transmitted: _	8/1.	3 93	be e	Daniel 7	Joseph
	. Pare Hansuntten. "			Uy		

HJU	SPECIAL	SAMPLE FO	RM		
Lab: No	_ □ Comp	⊠ Grab :	Date Receive	8/9	/93
Sample Date 8/9/	93	Sample Time		25	· 1000 ·
1	DMOID		医乳性小脑 医多性病 化二烷酸盐	SAME	
M	F MH14	10 g 10 m 10 g 10 m 10 g 10 g 10 g 10 g	and the second	Truck No.	Charles Control
Sampling Location: NEXT				//	
in the trade of the contract o	DETERMIN	TE DC	R'S PRE	SENT	7.70
	Stream			STP	☐ Hauler
☐ Industry ☐ Other (exp					
Timestry 25 Clother Cent				one solot v Vost	
Analysis: as noted	□ mg/L □ ug/L	□ mg/kg	□ % comp	□ other	
□ pH	_(units)	F		□ Hg	
☐ SPC :	(umhos/cm)	CI		□ As .	
D ALK		CN		□ Ba	
□ ACI		CNA		□ Be	
□ TS		KJN	* * * * * * * * * * * * * * * * * * *	□ Cd .	
□ ss		NH ₃	· · ·	□ Cr _	<u> </u>
□ vss		NO ₃		□ Cu .	-
□ %V		NO ₂	. · .	□ Fe .	
□ SET		PHT	· ·	□ Pb .	
[] GRE	_ 🗖	PHO		□ Ni	
□ BOD		so,	·	□ Se .	. · · · · · · · · · · · · · · · · · · ·
□ COD	_ 0	so ₃		□ Ag	
□ TOC		•		□ Zn	
D PHE		SUR	· ·	п ті	 .
<u> </u>	_ 🗆			□ Sb .	
o	_		<u>. </u>	<u> </u>	
				·	
□ Color:		Cr ⁺⁶	 .	.	<u>· · · · · · · · · · · · · · · · · · · </u>
□ Odor:				Hardness	
Appearance:				Chlorine	
Organics IR	GC TEL	RAD	_ w _ ı	rluor 🔀	4D
Biological:	Bioassay:		Total Coli		No./100ml
П	Microscopic:		Fecal Coli FecalStrep		No./100ml
CHOCK FOR		<u> </u>			No./100ml
Remarks:	C 1 C/3 4			 -	
		···-			
	Date Transmitte	ed:	/93	by: <u>m</u>	PRIO J. DEPAIR

MSD ENVIRONMENTAL COMPLIANCE LABORATORY INSTRUMENTATION ANALYSIS

Lab. No. 888 Sample Source:	Muchole F	-61	1 14	Date Rece	ved : 8/1	<u> 193 </u>
Sample Date 8/9/93 Time: 08	15	S Gi	ab □ Comp (Collected, by		
X IR X GC D LEL D RAD D UV	☐ FLUOR □	TLC			\$	
☐ Priority Pollutant mg/L	(except as noted	7		·	EUTRALS: (C	ont'd)
VOLATILES:	ACIDS: (Cont'd)		-	hexachlor		
acrolein acrylonitrila	2,4-dinitrophenol 2-nitrophenol			isophoron		
benzene Z1.3	4-nitrophenol pantachlorophenol			naphthale		
bromotorm	phenol			N-nitrosoc	limethylamine li-n-propylamine	
carbon tetrachloride	2.4.6-trichlorophenol BASE/NEUTRALS			N-nitrosoc	liphenylamine	
chlorobenzene	acenaphthene	<u> </u>		phenanthr pyrene		
2-chloroethyl vinyl ether	acensphthylene anthrecene		·		achlorodibenzo-p-die orobenzene	<u> </u>
chloromethane dibromochloromethane	. benzidine . benzo(a)enthracene			PESTIC	IDES:	
1.2-dichiorobenzene	benzo(a)pyrene			aldrin alpha-BHC		
1:3-dichlorobenzene 1,4-dichlorobenzene	benzo (b) fluoranthene benzo (q.h.i) perylene			beta-BHC		
1,1-dichloroethane 1,2-dichloroethane	benzo (k) fluoranthene bis (2-chloroethoxy) meth	ane		gamma-Bi delta-BHC		
1,1-dichioroethe ne	bis (2-chloroethyl) ether bis (2-chloroisopropyl) eth			chlordane 4,4'-DDD		- ,
trans-1, 2-dichloroethene 1,2-dichloropropane	bis (2-ethylhexyl) phthalat	•		4.4-DDE 4.4-DDT		
1, 3-dichioropropene, cia 1, 3-dichioropropene, trans	4-bromophenyi phenyi eth butyi benzyi phthalate			dieldrin		
methylene chloride	2-chloronaphthalene 4-chlorophenyl phenyl eth	er		alpha-endo beta-endo		
1,1,2,2-tetrachioroethane tetrachioroethene	chrysene dibenzo (a,h) anthracene			endousulf: endrin	an sulfate	
X toluene ∠1.	3,3-dichlorobenzidine			endrin ald		
1,1,2-trichloroethane	diethyl phthalate dimethyl phthalate			heptachlo		
trichloroethene vinyl chloride	di-n-butyl phthalate di-n-octyl phthalate			Y PCB-1016		21.3
ACIDS:	2.4-dinitrotoluene 2.6-dinitrotoluene			PCB-1221 PCB-1232		
4-chloro-3-methylphenol	1.2-diphenylhydrazine			PCB-1242		- 14
2-chlorophenol 2,4-dichlorophenol	fluoranthene fluorene			Y PCB-1248 Y PCB-1254		36.b
2.4-dimethylphenol 4, 6-dinitro-2-methylphenol	hexachlorobenzene hexachlorobutadiene			Y PCB-1260		_ <u> </u>
Gas Chromatography results:	n Methic		103 pm	Volati	. e c	
G(/FIX)	recembles		liesel to e	 		
Thin-Layer Chromatography results:	·		Appearance:			
Infrared Spectroscopy (a) methods utilize	d Smear test		Odor:			
			API Gravity:			
(b) results: 2920 cm-1- 517	crite-Singlet		Solubilities:			
1:50 cm-1- Mag	crate- Singles					
_	Icrate- Singlet		Distillation Ran	ge:		
Ultraviolet/Visible Spectroscopy results:			Flash Point:	·		
						
						
Special Tests: (specify)		_/_	· · · · · · · · · · · · · · · · · · ·		- 	'
Conclusions Infrared spects	ra and Go	:] [-	IN reser	shle	Die:el	Fueli
						
W.						
			. /			
	• • • •		13/93		1.	TUL
Date	Transmitted:		<u> </u>	by: _	<u> </u>	- July

PRELIMINARY ASSESSMENT

MOUND STREET PCB'S CITY OF ST. LOUIS, MISSOURI

March 21, 1994

Missouri Department of Natural Resources

Hazardous Waste Program

Prepared By

Don Falls

Don Falls Environmental Specialist Reviewed By

James L. Kavanaugh Chief, Site

Evaluation Unit

Approved By

Edwin Knight Chief

Superfund Section

Reference 16

٠.,

Rules of Department of Natural Resources Division 20—Clean Water Commission

Chapter 7—Water Quality

This copy of the regulations has been printed for use by this agency. It is copied from the <u>Code of State</u>

Regulations by permission from the Secretary of State. Subscriptions to the <u>Missouri Register</u> and copies of the <u>Code of State Regulations</u> are available through the Office of the Secretary of State, Administrative Rules Division, P.O. Box 778, Jefferson City, MO 65102. This copy of the Clean Water Commission regulations may not be used as evidence in a court of law. Copies for this purpose must be obtained from the official state records which are available through the Office of the Secretary of State. Recopy of this publication is not permitted without permission from the Secretary of State.

DEPARTMENT OF NATURAL RESOURCES Division of Environmental Quality Hazardous Waste Program

TELEPHONE OR CONFERENCE RECORD

File: Mound Street PCB Site Date: December 29, 1993

<u>TELEPHONE</u> <u>CONFERENCE</u>

Incoming (X) Field ()
Outgoing () Office (X)

SUBJECT: Mound Street PCB Site, Drinking Water Intakes

PERSONS INVOLVED

Name Rèpresenting

Eddie Starbuck

Don Falls

Sally McConkey

Richard Reed

MDNR, Geology and Land Survey

MDNR, Hazardous Waste Program

Illinois Water Survey

Illinois American Water Company

SUMMARY OF CONVERSATION:

Eddie Starbuck phoned to let me know that she had reviewed her notes from her previous work on the St. Louis Ship site and discovered a note that indicates that there is a drinking water intake located downstream of the Mound Street PCB site (approximately one mile) on the Illinois side of the Mississippi River. Her notes give the location of this intake as the SE 1/4 of the SW 1/4 of Section 11, T2N, R10W.

Eddie said she obtained this information from the Illinois Water Survey approximately two years ago and that their phone numbers are (217) 333-7223 and 333-5482.

ACTION TAKEN

I phoned the Illinois Water Survey and spoke with Ms. Sally McConkey. Ms. McConkey referred me to the Illinois American Water Company at (618) 874-1873. I then phoned Illinois American Water Company and spoke with a Mr. Richard Reed, Assistant Production Supervisor. Mr. Reed informed me that the Illinois American Water Company utilizes two water intake locations, one at Chouteau Island, which is about 10 miles upstream from the Mound Street site, and the intake in Section 11 in East St. Louis, Illinois. Mr. Reed said that their water company serves 19 medium to small communities with a combined service population of approximately 300,000. He also said that the East St. Louis intake has a

Telephone or Conference Record December 29, 1993 Page 2

production capacity of 30 million gallons a day and is blended with water from the Chouteau Island intake. The East St. Louis intake provides approximately 60% of the total according to Mr. Reed.

FINAL RESULTS:

This information will be incorporated into the Mound Street PCB Preliminary Assessment.

Don Falls

Environmental Specialist

DF:so

DEPARTMENT OF NATURAL RESOURCES Division of Environmental Quality Hazardous Waste Program

Reference 18

TELEPHONE OR CONFERENCE RECORD

File: Mound Street PCBs

Date: March 15, 1994

TELEPHONE (314) 882-9880

CONFERENCE

Incoming ()

Field ()

Outgoing (X)

Office (X)

SUBJECT: Fish Consumption From the Mississippi River at St. Louis

PERSONS INVOLVED

Name

Representing

Jack Robinson Don Falls Missouri Department of Conservation MDNR, Hazardous Waste Program

SUMMARY OF CONVERSATION:

I contacted the Missouri Department of Conservation (MDOC) office in Columbia to see if their department has any records concerning annual fish consumption from the Mississippi River at St. Louis. I was referred to Mr. Jack Robinson, a fisheries biologist with the MDOC who is responsible for records of commercial fish harvest on the Missouri, Meramec, and Mississippi Rivers.

Mr. Robinson explained that MDOC did not have information on actual consumption of fish, but only on the numbers caught by commercial fishermen. This information also does not include the numbers of fish taken and eaten by sports fishers.

Mr. Robinson said that he would send me the information on annual harvest from the Mississippi River later in the week. Mr. Robinson suggested that the Missouri Department of Health might have figures on the actual amount of fish consumed because of their previous studies on Chlordane and fish.

FINAL RESULTS:

This information will be included in the Mound Street PCBs Preliminary Assessment.

Don Falls

Environmental Specialist Hazardous Waste Program

on Falla

	SETHE		TRAMMEL	NET.	GILL N	ŒT	ноор	MET	: 1720T	LINE	TOTAL	L
SPECIE	POUMOS DOL	Lais	POUNDS DO		POUNDS DO		POLINOS D		POUNDS D		POUNDS DE	
ASTATIC CASP		•	6063	728	67	8	1510	181		•	7642	917
GRASSCARP			1076Z	2260	947	177	5770	7575	20	4	17499	3475
PARRIEFISH		-	2612	784	1361	408	1144	343	. 5Q	15	5167	1550
EEL		•		•	•	. •	104	19	727	41	331	. 60
GAR			4083	498	60	6	3171	317	913	91	8227	823
Q S CARP			26708	5075	145	25	60363	13431			87016	16533
SUCKER			4059	345	550	49	11577	· 104g			16186	1457
STURGEON			4465	1117	1353	338	11150	2788	30	8	17001	4250
BONFIN	-		820	57			10	1			830	58
BLUE CAT	•		10596	5829	6415	3528	12617	6939	10848	5966	49478	22263
CHANNEL CAT			7188	3953	378	208	90990	50044	20036	11020	118592	65226
BUILLHEAD	•		31	7	52	12	502	120	400	96	985	236
FLATHEAD			4466	2412	1522	822	69536	37549	2905	1649	78429	42352
DRUM		•	8919	1338	1412	\$13	37823	5473	2188	32B	50342	7651
CARP			66367	7964	2727	327	75146	9018	51 2	61	144752	17570
BUFFALD	•	•	87332	20960	12841	308z	95506	22873	3069	737	198548	47652
TOTAL			244476	53257	29832	9228	476519	149551	41198	19936	792025	23197E
DAYS		•	Z	938	•	150	105	907	5	930		•

Total reported harvest from the Missouri, Mississippi, + ST Francis Rivers in 1992

겄

			COH	HERCIAL	Fishing 1	992		11:	30 THURS	DAY, MARC	н 17, 1994 13	, , , ,
				CHECK	OF DATA				_	11. 4	M	Puge
	RIVER MESS	CSSIPPI CO	ANTY-TOTAL	\mathcal{L}	Total	harors	st repo	+ted	4mm	4Mg //	n,551551pp1	/ <i>(U\$7</i>
SPECIE	SEINE POUNDS DOLLARS	TRAMEL NET	GILL S POUNDS (HOOP POUNDS		TROT POUNDS DO		POUNDS			
STATE CARP			255 49	8	930			•	3371			
RASSCARP			437	92		_		_:	9663			
ADDLEFTSH		2512 7	. 1361	'408			50	15	4825		·	
EL	• •	259D ±	259 10	i	96 1440		227 904	· 41 90	325 4944			
AR S CARP	• •		110 145	28			744	70	64169		••	
UCKER	• •		90 510	46	.,		•	:	13290			
TURGEON			756 1553	338			30	8	12050			
OMFIN		8 Z Q	57 .		10		•	,	830	58		
LUE CAT .			56 6040	3322			8875	4881	26212			
HANNEL CAT			793 378	208			18406	10123	96437			
ULLHEAD LATHEAD		30 2 61 6 14	7 52 1622	12			400 23 2 5	96	752 54382			
IRUK	•		779 1330	822 199			2110	1255 316	37971			
:ARP			ZE 832	100			450	54	67645			
UFFALO			70 11256	2701			3007	722	118328			
TOTAL		120008 265	99 25295	8286		107619	36704	17602	515184	160107		_
	SEINE	TRANKEL NET	enti	MET		NET	Tran					
SPECIE	POUNOS POLLARS	POUNDS DOLLAR	POUNDS I	OTTORE.	BULNOS	DOLLARS	POUNDS D	OLLARS	POUNDS	DOLLARS		
KLIE CAT			ومسسس والمساور	/.	•	,	413	228	/ 414	228		
HANNEL CAT		/ · .		· / ·	201		542	277	693			
MALHEAD	• •	·/·	• ,	/ .	109		/ :	<u>/:</u>	709			
FLATHEAD HURK	• / •	X	• /	•	100	/		/17	128	-		
:ARP	- '/ ',	/ · <u> </u>	\cdot / \cdot	مر	217 100		10	/ 1	227 100			
SUFFALO		-	\sim :		561		./		561			
TOTAL	///:	•	'/ ×	:	1285	368	947	517	2232			
DAYS		• /		<u>`</u>		526		108				
					×							
	RIVER= MISS	ISSUPPI / C	CHINTY=BOOME	u /		_ /	· .	•				
SPECIE	SEINE POLINES	TRAMMEL NET POUNDS DOLLAR	CILI ES POLIMES I		HOOF POLINDS	DOLLANS	TROT		TOT POUNDS			
FRASSCARP	/ .	70	15 .	_	3.50	- 73			. 420	68		
PADOLEFISH	/	300	7 0 300	90					615			
B S CARP	/	/ 150 /	28 20	4		/ ·	•	•	170			
STURGEON	· · ·/	100	25 .		<i></i>	•		•	100	2.5		
30HFIN	. {	20	1 .	•		•		•	20			
PLUE CAT	• •	40 160	22 ,	•	725		•	•	265			
FLATHEAD	•		88 . 162 .	•	560 256		•	•	720 656			
PRUM	: :			•	568		•	•	568		-	
1.			•	•	1	-	•	•	_30	~		

			CHECK (OF DATA			
CHANGEL CAT		375 206		587 323	· 2221 1222	31831751	
FLANGEAU		106 57	•	764 413	. 70 38	990 508	
DECAM		84 13		185 28		51Z 77	
CARP		705 85		99 12		824 99	
BUFFALD		1259 302	•	2036 489		3295 791	
TOTAL	<u> </u>	3169 598		3711 1276			
, DAYS	, ,				707	7514 2507	
, mis	•	24		***************************************	707		
							•
	RIYER⇒ MISS	erezelbac conv	TY-ST GENEVIEWS	5			Reported commercial horizestally country to her cou
			ai-				∖. 0 `
	SEINE	TRANSCE KET	AZCL NET	HOOP NET	TROT LINE	TOTAL	€ .
SPECIE	POLINOS DOLLARS	POUNDS POLLARS	HOLINDS DOLLARS	POUNDS DOLLARS	Pounds Dollars	POUNDS DOLLARS	163 off
							ν (1,) γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ
Car				•	100 10	100 10	MU de l'Alle Les
Q S CARP		12 2		~~~ 70 13		82 16	(2) 1, 1, 1
CHANNEL CAT	•	• • •			. 25 14	25 14	(, , , , , , , , , , , , , , , , , , ,
BULLKEAD	. /				126 30	125 50	1 1/0 /40
FLATHEAD	• •			•	50 27	' 50 27	
DASAM				25		25 4	and a series of the
CARP					. 50 6	50 6	(Ca. Cla 1361
BUFFALO		. 30 7		15 4	280 67	325 78	3.8° ~ (9th
TOTAL		4Z 9) [110 21		782 186	CAR WELL CO WAR
DAYS	• <u>•</u>	2	•	5	115		$^{-0}D_{i}$ $^{-4}L_{\mu\nu}$ $^{\prime\prime}V_{i}$
				_		<i>K</i>	ler sing low low
				\		•	All Car is
	RIVER- HIS	SISSIPPI COU	TY=ST LOUIS 97	}			Spc -21, //0"
				J		No.	
	SEINE	TRAMEL NET	GXLL HET	HOOP NET	TROT LINE	TOTAL	مون ما ما ما ما ما ما ما ما ما ما ما ما ما
SPECIE	POUNDS DOLLARS	POLNIS DOLLARS	POUNDS DOLLARS	POUNDS DOLLARS	POLINOS DOLLARS	POUNDS BOLLARS	live the alle
			,			, , ,	" Age 12"
PADOLEFISH	~	175 51				175 52	def 12
GAR		. 33 3			. 1 6	34 3	I all Car
Q S CARP		255 46				256 48	8° W.0
STURGEON		60 15				60 15	· */>
BLUE CAT		541 298	•	25 14	235 1z9	801 441	W.
CHANNEL CAT	Ĭ	154 85		4/93 271		2708 1487	•
FLATRIEAD	•	10		145 78		694 375	•
DRIAM	•	67 10				. 979 3/3	
CARP	•	. 705 a a	•	15 :	. 88 13	170 25 705 A5	
BUFFALO	•					•	
TOTAL	•			121 2			
DAYS	• • •	. 3150 <u>a</u> 70	• •	799 394		7768 3052	
DA12	•	17	•	293	274	- -	
	air .						
	RIVER HIS	TSSIPPI COUR	MY=SCOTT 101				
	114.00 III.00		mi-went tot		•		
	SEINE	TRAMMEL NET	EXIL NET	HOOP RET	TRUT LINE	TUTAL	
SPECIE	POUNDS DOLLARS	POUNDS DOLLARS	POLICES DOLLARS	POLATS DOLLARS	POUNDS DOLLARS	POUNDS DOLLARS	
		. Toront buckfill		LAGRES WALLAND	- WIND INTEND	LYTHE INCIDES	
ERASSCARP		35	,			35 7	
EEL	٠ ــــــــــــــــــــــــــــــــــــ		• •	•			1.
CAR				و دائرا 🔸 ا	-10 :		• *
	· ·	·	_	139-1			
とした た・マー・イ					50 5	. ••	:•
BLUE CAT		. 50 ti	,	A (4)	2379 1300	2429 1336	•
CHANNEL CAT		50 2		122 1	2379 1300 2079 1143	2429 1336	· :
		. 50 ti		A (4)	2379 1300	2429 1136 2101 1166	· :

Reference 19

SPECIAL PROBLEM INVESTIGATION DEPARTMENT OF ENVIRONMENTAL COMPLIANCE

CONTROL NUMBER: 93 07 08 DAY

CROSS REFERENCE:
NEW FILE: BROOKLYN STREET PUMP STATION
TO: HOWARD EDMOND FROM: SI SMITH DATE ASSIGNED: 07-08-93 TIME: 0800 SUBJECT: 0IL IN BROOKLYN STREET PUMP STATION SPECIAL INSTRUCTIONS: LOCATE SOURCE OF OIL ENTERING BROOKLYN STREET PUMP STATION AND TAKE CORRECTIVE ACTION
STREET ADDRESS: FOOT OF BROOKLYN STREET ZIP CODE: 63102 NEAREST INTERSECTION: MULLANPHY MAP COORDINATES: 28-D-19
TYPE OF PROBLEM: OIL ENTERING PUMP STATION TRUNK SEWER: BCH TRTMT PLANT: BISSELL WATER COURSE: N/A
VOLUME: UNKNOWN QUANTITY: UNKNOWN CAUSE: SOURCE: POSSIBLE LEAKING TANK
PERSON REPORTING: TELEPHONE: CONTACT PERSON: JAMES GARAVAGLIA TELEPHONE: 622-3588
DATE OF INCIDENT: ON GOING RESPONSIBLE PARTY: CITY OF ST. LOUIS REGULATORY AGENCY CONTACTED: MSD, MODNR, FIRE DEPT, & CITY OF ST. LOUIS CLEAN UP BY: REACT ENVIRONMENTAL ENGINEERS
COMPLETION DATE: 08-19-93 DAMAGES BILLED (\$):
INVESTIGATIVE ACTION SUMMARY: 07-08-93 Call from MSD pump station stating oil was entering Brooklyn pump station. I obtained a sample for analysis. Started looking for possible source. Located an under ground storage tank, which has large hole in the top, on the south side of a vacant building located just west of the pump station and south of Brooklyn Street. A sample of the oil still in this tank was collected. The analysis of the oil from the pump sta contained 47 mg/l of 1254 pcb's and the oil from the tank contained 39 mg/l of 1254 pcb's. I contacted Charlie Gay of the Fire Marshall's office and met him at the site on 07-16-93 to show him the problem and to obtain help in finding owner of property. Charlie contacted Chief Horn, informed him of the situation, Chief Horn contacted James Garavaglia of the comptroller's office. We met at site. It was determined at this time that the City of St. Louis is the owner of the east half of the property between 1st St. and the flood wall and Wheeler Ferry Company owns the west half. Cont. Page two
CONCLUSION: It appears at this time an underground storage tank is the cause of this problem. Also the possibility exist of ground saturation of oil from an old Union Electric building.
Copy sent to:Date:

SPECIAL PROBLEM INVESTIGATION continued:

DETAILS OF INVESTIGATION: <u>The City is to locate owners of the property and take action on getting area cleaned up. They contacted React Environmental Engineers.</u>

- O7-16-93 Met with city engineers and React to determine what is to be done.

 At the present time React is placing booms in the wet well of the pump station to soak up the oil entering. It was not determined at this time what to do with the underground tank. React wanted to trench along the sewer entering the pump station but due to the high water table and the possibility of causing a major problem with the flood waters no trench at this time.
- 07-26-93 Returned to the pump station to follow up on the clean up. React did not place booms in station they only put absorbent pads. The pump station maintenance crew removed the pads to prevent them from being pulled into the pumps since they were not tied down. I contacted the city comptroller and informed him of this problem. React contacted me and I told them that they had to use booms inside the station and tied to prevent any possibility of being pulled into the pumps or move outside station into the first manhole up stream to collect the oil.
- or-27-93 Met Chief Horn at the pump station. React has installed boom and they are tied. Checked the underground tank and nothing has been done to the tank. It still has oil standing in the bottom. It appears that there could be at least 6 to 8 inches of oil in the tank. There is still a small oil sheen on the water entering the station. Chief Horn is to find out what is to be done with the tank and let me know.
- 07-28-93 Met Chief Horn and Clifford Trice, chief engineer for Terminal Raïlroad
 Association at the site of the underground tank. It has been determined that
 the property belongs to Terminal Railroad. They are to take steps to remove
 the tank.
- 07-29-93 Received call from Daryl Bowles, Gehm Corp, rep for Terminal Railroad requesting copies of analysis on pump station and tank. They are to preform an infrared test on area to try and determine just where the oil is entering the sewer. Test is to be done first week of August. Copies of analysis sent.
- 08-03-93 Made follow up on progress of clean up. The area around the tank has been cleaned up and graded but the opening to the tank has been covered. No way at this time to tell if tank has been pumped. The booms at the pump station do not appear to have been serviced since they were last installed.

SPECIAL PROBELM INVESTIGATION continued

PAGE 3 of 3 93 07 08 Yr Mo Day BROOKLYN PUMP STATION

08-04-08 Met with Terminal Railroad, consulting company and fire department underground tank is being pumped out today. Tank will be removed as soon as the water level goes down. The infrared pictures that were taken do not indicate the source of oil in pump station is from tank. They did indicated a possible location of another underground tank on the city property just south of Mound Street. Fire department was notified.

08-08-93 1015 Hrs Received call from Chief Horne requesting my presents at 1st & Mullanphy. Three manholes were located along the flood wall which contained a large amount of oil. Could not determine at this time where oil is coming from. The manholes are holding water. I will return 08-09-93 to collect samples to find out if pcb's are present. There is some question as to the manholes belonging to MSD or the City.

08-09-93 Collected oil samples from all three manholes. Waiting on analysis.

08-10-93 Met Charlie Gay of fire department. He wanted to know where the manholes were located that contain this last source of oil. Also wanted to look at clean up that was preformed on the underground tank. The tank has been pumped and washed out. The oil has been remove.

08-17-93 The analysis of the samples taken from the manholes indicated they also contained a small amount of pcb 1254. These manhole belong to the city and Fire Marshall Horne was notified of this fact and also the results of the analysis on the manholes. The pads at the pump station have not been changed as of 08-17-93. Chief Horne was also informed of this situation.

08-19-93 The pads at the pump station were changed yesterday 08-18-93. The City of St. Louis is now taking care of having this problem cleaned up.

STATE OF MISSOURI

DEPARTMENT OF NATURAL RESOURCES

- MEMORANDUM -

DATE:

December 29, 1993

TO:

Don Falls, Environmental Specialist, HWP, DEQ

FROM:

Edith Starbuck, Geologist, Environmental Geology Section, DGLS

SUBJECT: PA/SI Geology Report for the Mound Street Site, St. Louis City

Enclosed is my report on the geologic and hydrologic considerations for the Mound Street Site. The report addresses specific conponents of the HRS. Please let me know if you have any questions or comments or need additional information.

RECEIVED

94 JAN 3 AM 11 27

94 JAN 3 AM 11 27

HAZARDSUS WASTF FELISTAM

HAZARDSUS WESTF FELISTAM

HAZARDSUS WESTF FELISTAM

NATURAL RESOURCES

3.0.1 General Considerations
The Mound Street site is located on the riverfront in the City of St.
Louis. It is east of Second Street between Mound and Brooklyn Streets.

3.0.1.1 Groundwater target distance limit

The site is located on a narrow strip of alluvium between an area of limestone bedrock and the Mississippi River. (Ref. 1) The groundwater within the alluvium will move generally in the direction of the river, that is, to the east or southeast, and it will eventually discharge to the river. During unusually high river stages, the groundwater may temporarily flow away from the river. Since no confining layer is known to exist between the alluvial aquifer and the bedrock of Mississippian limestone (Ref. 4, p. I-136), the groundwater target distance should extend for a four mile radius from the site.

3.0.1.2 Aquifer boundaries

The shallowest material at the site is fill material. Its thickness is unknown, but is estimated at 15 to 18 feet.

The alluvium consists of a mixture of stratified sediments deposited by the river. Based on findings at a nearby site, the alluvium is made up of clay, and silty clay in the top 10 to 30 feet, but becomes generally coarser with depth, becoming silty sand and sand. Lenses of gravel can be found. (Ref. 2, p. 3-19 to 3-33) The total thickness of the alluvium is estimated at approximately 80 feet. The alluvial aquifer can be expected to yeild large quantities of fresh water. (Ref. 15, p. 21) The depth to water will be approximately 20 feet. The bedrock is Mississippian aged limestone.

The Mississippian System in this area is made up of a sequence of limestone, cherty limestone, and sandy or shaley limestones. This system includes, in decending order; the Ste. Genevieve Limestone, St. Louis Limestone, Salem Formation, Warsaw Formation, Burlington-Keokuk Limestone, and the Fern Glen Formation. (Ref. 13) The Salem and Warsaw formations are generally shaley limestones and do contain shale beds in the St. Louis area. (Ref. 14, p. 101-110) However, the thickness and position of shale horizons varies within this area (Ref. 14, figs 88, 89, 91, 92) The shallowest reliable aquitard in the area is the Maquoketa Shale at the top of the Ordovician System. The Mississippian aquifer might yield small quantities of fresh water in the target area, (Ref. 15, Ref. 16) but very little data is available. Any groundwater below the Maquoketa is expected to be mineralized. (Ref. 15, Ref. 16)

3.0.1.2.1 Aquifer interconnections

Drilling at a nearby site encountered no confining material between the alluvium and bedrock. (Ref. 4, p. I-136) The bedrock and alluvium can be considered one aquifer for HRS purposes.

3.0.1.2.2 Aquifer discontinuities

The alluvial aquifer is bounded by the limits of its deposition within the target area. Bedrock faulting in the area does not completely transect the Mississippian aquifer. No aquifer discontinuity exists within the target area.

- 3.1 Likelihood of release
- 3.1.2 Potential to release
- 3.1.2.2 Net precipitation

The assigned net precipitation factor value for the site is 3. (Ref. 3, figure 3-2)

3.1.2.3 Depth to aquifer

The depth to groundwater at the site is approximately 20 feet. The alluvial sediments at this depth may not be good aquifer material, however, the depth at which the alluvial material is saturated should be considered the aquifer. The depth to aquifer factor value is 5. (Ref. 3, table 3-5)

3.1.2.4 Travel time

The hydraulic conductivity for the shallow part of the alluvium consisting of silty clay and clay has been calculated at 9.9 x10 $^{-6}$. (Ref. 4, p. 6-26) It's thickness ranges from 10 to 30 feet. The travel time factor value is 15. (Ref. 3, table 3-7)

3.3.1 Nearest well

There is not believed to be any groundwater use within the target area. (Ref. 4, p. I-136; Ref. 5; Ref. 6). The nearest well factor value is 0. (Ref. 3, table 3-11)

3.3.4 Wellhead protection area

There is no wellhead protection area within the target area.

4.1.1.1 Definition of hazardous substance migration path for overland/flood migration component

The site is located on top of the flood wall constructed to protect the area from flooding. No channels or ditches were observed crossing the site. (Ref. 7) Much of the site is relatively flat. The eastern edge of the area slopes to the east, toward the river. The site is less than 300 feet from the river.

4.1.1.2 Target distance limit

The target distance limit should include the Mississippi River from the area downgradient from the site to a point fifteen miles downstream. This should be at approximately Mississippi River mile marker 166.

4.1.2.1.2.1 Potential to release by overland flow

4.1.2.1.2.1.2 Runoff

The drainage area for the site is less than 50 acres. (Ref. 8) the drainage area value is 1. (Ref. 3, table 4-3) The soil at the site appeared to be somewhat coarse textured. (Ref. 7) A moderate infiltration rate would be expected. The soil group designation is B. (Ref. 3, table 4-4) The two-year, 24-hour rainfall for the area is approximately 3.5 inches. (Ref. 9)

The rainfall/runoff value is 4. (Ref. 3, table 4-5) The runoff factor value is 1. (Ref. 3, table 4-6)

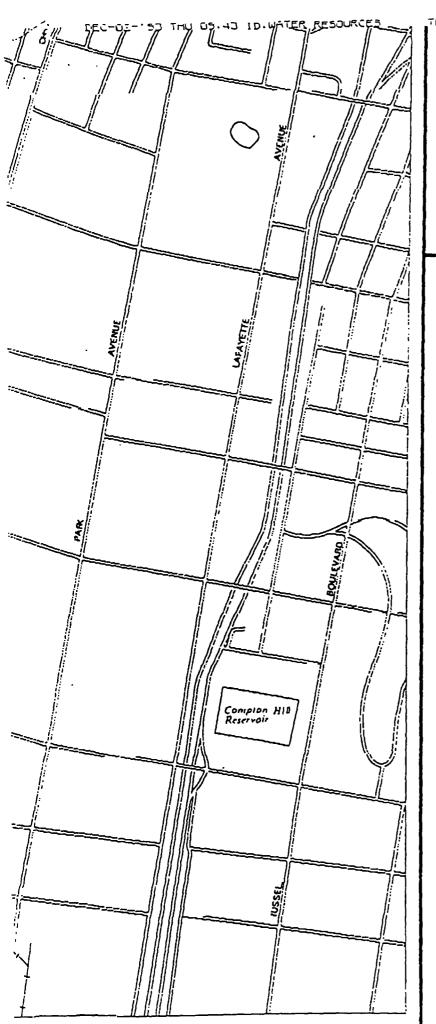
4.1.2.1.2.1.3 Distance to surface water

Since no ditches or channels were noted, the distance to surface water is estimated as a straight line between the site and the river. This distance is about 300 feet. (Ref. 8) The distance to surface water factor value is 20. (Ref. 3, table 4-7)

4.1.2.1.2.2 Potential to release by flood

4.1.2.1.2.2. Flood frequency

The site is located on top of a flood wall constructed to withstand a 500-year flood. It is elevated above the floodplain and therefore, the flood frequency factor value is 0. (Ref. 3, table 4-9)


4.1.2.3.1 Nearest intake

On the Missouri side of the Mississippi River, the nearest intakes are approximately 10 miles upstream from the site and 126 miles downstream. (Ref. 11) Information from the Illinois Water Survey indicates that there is a public water supply intake within the target area on the Illinois side. This intake is in the SE 1/4 of the SW 1/4 of section 11, T.2 N., R.10 W. in St. Clair County, Illinois. (Ref. 10) This would be less than one mile downstream from the site.

The Mississippi River is a very large river with an average flow greater than 100,000 cfs. (Ref. 12, p. 180) The assigned dilution weight is 0.00001. (Ref. 3, table 4-13) Because of this small dilution weight, the intake factor value is 0. (Ref. 3, p. 51613)

REFERENCES

- Geologic Map of St. Louis City and County, Missouri, K.G. Brill, DGLS, 1991.
- 2. Remedial Investigation Report for the St. Louis Site, prepared for U.S. Department of Energy under the Formerly Utilized Site Remedial Action Program by Bechtel National, June 1991.
- 3. Federal Register, vol. 55, No. 241.
- 4. Radiological, Chemical, and Hydrogeological Characterization Report for the St. Louis Downtown Site in St. Louis, Missouri, prepared for the U.S. Department of Energy under the Formerly Utilized Site Remedial Action Program by Bechtel National, September, 1990.
- 5. Census of Missouri Public Water Systems, 1991, DEQ.
- 6. Well records for the area on file at DGLS.
- 7. Field observations, 10/6/93.
- 8. Granite City 7.5 minute topographic quadrangle, U.S. Geological Survey, 1954, photorevised 1982.
- 9. Rainfall Frequency Atlas of the United States, Technical Paper No. 40, U.S. Department of Commerce.
- 10. Telephone messages from Dorothy Waller, Illinois Water Survey, June 11, and 12, 1992.
- 11. Census of Missouri Public Water systems, 1991, DEQ.
- 12. Water Resources Data, Missouri, Water Year 1989, U.S. Geological Survey Water-Data Report MO-89-1.
- 13. Geologic Map of St. Louis City and County, Missouri, K.G. Brill, DGLS, 1991.
- Paleozoic Succession in Missouri-Part 4, Mississippian System, Report of Investigation No. 70, Part 4; Thomas L. Thompson; DGLS, 1986.
- 15. Water Resources, St. Louis Area, Missouri, Water Resources Report No. 30; Don E. Miller, et. al.; DGLS/USGS; 1974.
- 16. Groundwater Areas Map <u>in</u> Groundwater Maps of Missouri; Missouri Geological Survey and Water Resources; 1963.

TEL 140.314-731-8473 #656 F02
shown on this map to determine when actuarial rates apply to
structures in the zones where elevations or depths have been

To determine if flood insurance is available in this community,

Program, at (800) 638-6620, or (820) 424-8872.

APPROXIMATE SCALE

1000 0

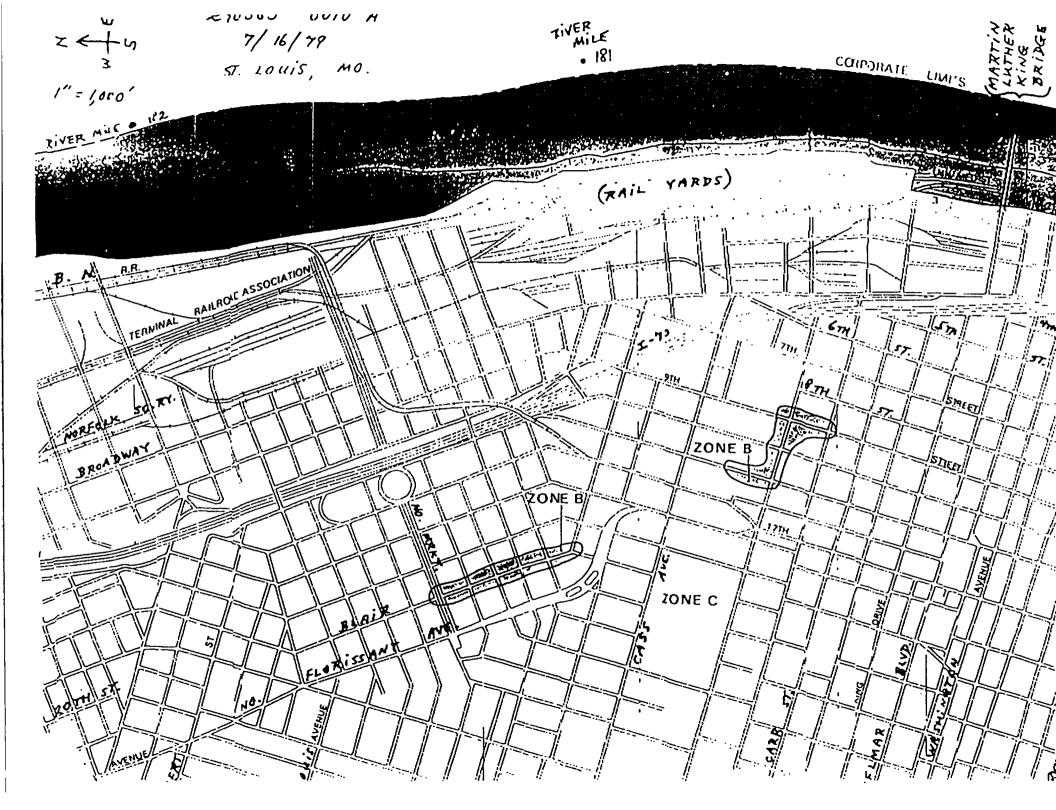
1000 FEET

NATIONAL FLOOD INSURANCE PROGRAM

FIRM

FLOOD INSURANCE RATE MAP

CITY OF ST. LOUIS, MISSOURI INDEPENDENT CITY


PANEL 10 OF 40
(SEE MAP INDEX FOR PANELS NOT PRINTED)

COMMUNITY-PANEL NUMBER 290385 0010 A

EFFECTIVE DATE:

JULY 10,1979

U.S. DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT FEDERAL INSURANCE ADMINISTRATION

		,	
		٠.	
. ;	STATE OF MISSOURI OFFICE INFORMATION MEMO		
	Edie		
. :	Dorothy Waller TLL With Survey		
:	621-7-333-7223 KB Called/was here to see you = D Will call again		
	☐ Wants you to call ☐ URGENT ☐ Returned your call ☐ Prepare for my signature ☐ For your information ☐ Review	٠.	
	☐ Take necessary action ☐ For your signature ☐ As requested REMARKS MESSAGES		
-	Pub. Wtr. Supply Intakes on Miss. River		•
,	2) in East StL Illinois American Wir Co		e e e e e e e e e e e e e e e e e e e
	THN-RIDW-S.25 (SW Corner)	•	
:	T2N- RIOW- S. 11 (SE cornery SW/4)		
	(1) in Alton		
	T5N-RICW-5.4 (SE auna)		
	MORE 1/1 /1/07:10 = (c) (2/7) 333-5482	~ .	
	Lindace Wyr. Sect & Sally & Broerer	}	

STATE OF MISSOURI

DEPARTMENT OF NATURAL RESOURCES

- MEMORANDUM -

DATE:

January 5, 1994

TO:

Don Falls, Environmental Specialist, HWP, DEQ

FROM:

Edith Starbuck, Geologist, DGLS

SUBJECT: Existence of karst near the Mound Street Site

Sinkholes and caves can be found in the Mississippian bedrock within the target area. The sinkholes are represented as closed depressions on the Granite City topographic map. Also, the existence of karst features is discussed in the DGLS publication, "Engineering Geology of St. Louis County, Missouri". The karst aquifer probably does not directly underlie the site, however, and it is not likely to be affected by contaminant migration from the site. If the site is actually on the bedrock residual area, any water that percolates down into it should move toward the alluvial aquifer since groundwater movement is toward the river.

Please let me know if you have any further questions about the site geology (314)368-2136.

ES:kb

HAZARDOUS WASTE PROGRAM MISSOURI DEPARTMENT OF NATURAL RESOURCES

	MOUND ST	TREET SITE STRA	TIGRAPHY		
	Stratigraphic Unit	Composition	Thickness (ft.)	Remarks	
Quaternary System	Alluvium	Clay, silt, sand, gravel	80	High yield aquifer	
Mississippian System	Ste. Genevieve Formation	Silty to sandy limestone	470 - 530	Yields small to moderate quantities of water	
	St. Louis Limestone				
	Salem Formation			CEIV	EΠ
	Burlington- Keokuk Limestone	Cherty limestone	240	RECEIV JAN 6	PROGRAM
	Fern Glen Formation	Red limestone and shale	100	JAN HAZARDOUS WAST 1.0550LINI DEPA 1.	בטויטרב: ניארני
	Chouteau Group	Limestone, shale and siltstone	0 - 122		
Devonion System	Sulphur Springs Group	Sandstone and limestone	0 - 60		
	Grassy Creek Shale	Carbonaceous Shale	0 - 50		
Silurian System		Cherty limestone	0 - 200		
Ordovician System	Maquoketa Shale	Silty, limey, or dolomitic shale	150	Confining layer	

Log # Owner:NORTHWESTERN COOPERAGE CO St:MO Cnty:ST. LOUIS
019835 SE SE NE TRS: S02 T45N R07E
Alias: Lat.:38,40,23.648N
Type well:Private Well Long.:90,11,25.660W

Type log: S Quad:38090C6
Driller:HAVERSTICK WELL CO Date: /

Driller License No: Confidential: N Release Dt. /

Logger; C.E. ROBERTSON Date: 08/1961

Elev.: 420 Elev.S Yield: 260 SWL:(a) H20 @:

T.D.: 80 base: DrDwn: 31 SWL:(b)

Bedrock at: 75 Samples saved:N Int. cored: 0 to 0

Top Fm.:HOLOCENE ALLUVIUM Bot Fm.:MISSISSIPPIAN SYSTEM

Problems: Remarks:

Log #:019835 Date Completed: /

CASING: Dpth: 59 Diam: 8.00 I/O:O Sz. Hole: 0.00 Sz. Below: 0.00

0 0.00 0 0.00 0 0.00

GROUT: Type Rig Methd Dt Abnd Plug Date Top Bottom

PUMP: Cap Type Set at TDH Scrn Typ Size Lgth Slot

Well Treat Type Dev Typ Compl Perf. Interval Tube Pres. Oil Gas
Top: 0 Bot: 0

Open Top:HOLOCENE ALLUVIUM
Formations Bot:MISSISSIPPIAN SYSTEM

Other data sources:

Remarks:

-----Stratigraphy Data------

 Log #:019835
 --Lith-- -------Minerals-----

 Top Base Name
 Pr Sc Mn Pri Oc Sec Oc Mnr Oc

 0 75 HOLOCENE ALLUVIUM
 CL SD GR 0 0 0

 75 80 MISSISSIPPIAN SYSTEM
 LS SD 0 0

Printed on 12/30/93 at 10:45:40.

St:MO Cnty:ST. LOUIS Log # Owner: BELCHER HOTEL 001655 Alias type: Facility ID NE SW SW TRS: S13 T45N R07E Lat.: Alias:010000 Type well:Noncommunity Public Well Long.: Quad: UNKNOWN Type log: D Date: / Driller: Confidential: N Release Dt. / Driller License No: Date: / Logger: Elev.: 420 Elev.S Yield: 150 SWL:(a) H20 @: T.D.: 2200 base: DrDwn: 000 SWL:(b) Bedrock at: 0 Samples saved:N Int. cored: 0 to 0 Top Fm.: Bot Fm.: Problems: Remarks: . . ------Construction Data----Log #:001655 Date Completed:09/1951 CASING: Dpth: 80 Diam:160.0 I/O:O Sz. Hole: 0.00 Sz. Below: 0.00 0.00 0 0 0.00 0 0.00 Top GROUT: Type Rig Methd Dt Abnd Plug Date Bottom / TOH Scrn Typ Slot PUMP: Type Set at Size Lqth Cap 0 0 0 0 0 0

Well Treat Type Dev Typ Compl Perf. Interval Tube Pres. Oil Gas

Top: 0 Bot: 0

Open Top: Formations Bot: Other data sources: Remarks:

-----Dataligraphy Data-------

Log #:001	655	Lith	Mine	cals	
Top Base	Name	Pr Sc Mn Pri	Oc Sec	Oc Mnr	OC
0 230	ST LOUIS LIMESTONE	LS SH	0	0	0
230 350	SALEM FORMATION	LS CH	0	0	0
350 380	UNKNOWN	SH	0	0	0
380 460	WARSAW FORMATION	LS SH	0	0	0
460 630	KEOKUK-BURLINGTON LS. UNDIFF	LS SH	0	0	0
630 720	FERN GLEN FORMATION	LS SH CH	0	0	0
720 760	KINDERHOOK SHALE	SH	0	0	0
760 880	SILURIAN SYSTEM	LS	0	0	0
880 1040	MAQUOKETA SHALE	SH LS	0	0	0
1040 1180	KIMMSWICK LIMESTONE	LS	0	0	0
1180 1240	DECORAH GROUP	LS CH	0	0	0
1240 1370	PLATTIN LIMESTONE	LS	0	0	0
1370 1502	JOACHIM DOLOMITE	SH LS	0	0	0
1502 1640	ST. PETER-EVERTON FMS. UNDIFF	SS	0	0	0
1640 2200	CAMBRIAN SYSTEM	SS LS	0	0	0

Printed on 12/30/93 at 10:49:09.

. Log # Owner: CUPPLES COMPANY

St:MO Cnty:ST. LOUIS

003616

SE NE NW TRS: SO2 T45N R07E

Alias:

Lat.:

Type well:Private Well

Long.:

Type log: S

Quad: UNKNOWN

Driller:WISE

Date:05/1936

Driller License No:

Confidential: N Release Dt. /

Logger:GROHSKOPF

Date: /

Elev.: 421 Elev.S Yield: 15 SWL:(a) H20 @:

T.D.: 885 base: DrDwn: 0

SWL:(b)

Bedrock at: 0 Samples saved:N Int. cored: 0 to 0

. .

Top Fm.:ST LOUIS LIMESTONE Bot Fm.:SILURIAN SYSTEM

Problems: Remarks:

------Stratigraphy Data------

Log :	#:003	616	I	ith		Mine	cals	
Top	Base	Name	Pr	Sc Mr	Pri	Oc Sec	Oc Mnr	OC
0		ST LOUIS LIMESTONE	LS	SH		0	0	0
210	325	SALEM FORMATION	LS	CH SH	Ī	0	0	0
325	435	WARSAW FORMATION	SH	LS CH	i	0.	0	0
435	595	KEOKUK-BURLINGTON LS. U	UNDIFF CH	LS		0	0	0
595	700	FERN GLEN FORMATION	CH	LS SH	Ī	0	0	0
700	735	CHOUTEAU GROUP	LS	CH		0	0	0
735	755	CHATTANOOGA SHALE	SH			0	0	0
755	885	SILURIAN SYSTEM	LS	SD DL	ı	0	0	0

Printed on 12/30/93 at 10:47:17.

.Log # Owner:FISHER CHEMICAL CO St:MO Cnty:ST. LOUIS NW SE SE TRS: SO2 T45N R07E 002748 Lat.: Alias: Type well:Private Well Long.: Type log: S Quad: UNKNOWN Driller:WISE Date:08/1933 Driller License No: Confidential: N Release Dt. / Date: / Logger:GLEASON Elev.: 430 Elev.S Yield: 30 SWL:(a) H20 @: T.D.: 210 base: DrDwn: 150 SWL:(b) Bedrock at: 45 Samples saved:N Int. cored: 0 to 0 Top Fm.:ST LOUIS LIMESTONE Bot Fm.:ST LOUIS LIMESTONE Problems: Remarks: ----- Donstruction Data------Log #:002748 Date Completed:08/1933 30 Diam: 8.00 I/O:O Sz. Hole: 0.00 Sz. Below: 8.00 CASING: Dpth: 0.00 0 0.00 0 0.00 0 GROUT: Type Rig Methd Dt Abnd Plug Date Top Bottom __/ Set at TDH Scrn Typ Size PUMP: Cap Type Lqth Slot 0 0 Well Treat Type Dev Typ Compl Perf. Interval Tube Pres. Oil Gas Top: 0 Bot: 0 Open Top:ST LOUIS LIMESTONE Formations Bot:ST LOUIS LIMESTONE Other data sources: Remarks: -----Dtratigraphy Data-------

 Log #:002748
 --Lith- --Minerals-----

 Top Base Name
 Pr Sc Mn Pri Oc Sec Oc Mnr Oc 45 210 ST LOUIS LIMESTONE
 LS CH 0 0 0

Printed on 12/30/93 at 10:46:32.

Reference 21

STATE OF MISSOURI

DEPARTMENT OF NATURAL RESOURCES

MEMORANDUM -

DATE:

January 5, 1994

TO:

Don Falls, Environmental Specialist, HWP, DEQ

FROM:

Edith Starbuck, Geologist, DGLS

SUBJECT: Existence of karst near the Mound Street Site

Sinkholes and caves can be found in the Mississippian bedrock within the target area. The sinkholes are represented as closed depressions on the Granite City topographic map. Also, the existence of karst features is discussed in the DGLS publication, "Engineering Geology of St. Louis County, Missouri". The karst aquifer probably does not directly underlie the site, however, and it is not likely to be affected by contaminant migration from the site. If the site is actually on the bedrock residual area, any water that percolates down into it should move toward the alluvial aquifer since groundwater movement is toward the river.

Please let me know if you have any further questions about the site geology (314)368-2136.

ES:kb

Y94 JAN 7 AM 11 06
HAZARDOUS WASTE FROGRAM
MISSOURI DEPARTMENT OF
NATURAL RESOURCES

BOOK

Mound Street PCB

ST LOWIS CHO

Carelle 115 NB MONSONSESSE

No-CHEYED

TI 5(ar pr DSite Recon VISIT- Dec 6, 1995 5760 Lame SuE overland Park Boffice Arrive SUE ST LOUIS Office 11.0 pickup Keven Harris 1130 | Louis SUE St Laws Office arrive site 1200 @/* begin making site schematic Hermin arrives at site 1215 interview um (Mikinley lon rep) 1 12:30 Harman left site Mound temporatre mostly cloudy, slight breeze Michael W Me Cindy

12.32 (i) looking worth at south Herman Gallman therwest 12:15-12:30 and of property property size is approx 1. Sacres 12:32 12 leaking north along grand basingut may be is deepers 12-14' demo into the basament don't know if removed 12.33 (3) leeling how Howard Glied will meneta wall or floor 12.34 (1) looking south at north end and alandoned suns house a property to city for ble path 17.35 (B) ! long vast from west sale 12:37 (b) looking sse from west side our some property out of 14.38 (4) aboutoned granel elevators Inter (between grand of to W (TRRA property) Find wall) property ingually perchased from WE Por salvage of egupment See map on preceeding page no other operations conducted For picture location and viewing direction at the site

Michael Withe lindy

Michael Whalundy

(b)oust & south east (1) looking oust from gravel rold 540 (Multimal property) licking see from gravel real See (1) looking NNE Grown grave Map 100kg 1101th along flow vall - pump station (150) (1) looking west toward See my or following page for picture location and viewing direction Whichael WAto Condy Whichael Whaling

and not beate RW 12811 lacking west at well Gram Cons mas Tours cleatified MHS Pros 08 (6175 map UE MH chimalone other MH relamolone lulet FOF Corp map 15 for surface runoff Same runoff from site may enter this storm drainhowever, it appears most surface rupoff would travel east a south noted a day in the Petroleum Fuel & Terminal man yard 12:59 (4) looking NWW of well Mehael WMclindy Michael WMclindy

to wer Rip Rap Cool 4-55 Wichael WHoling Whichel is McCounty

(2)									(13)
13120				·					
	reacte.	site.	- ~	·					-
i3:55	air ve	SVE ST	Louis	Office					
14:00		off Ken SyEst	,				-		
18:30	arrive	Sue Overl	nd_lask	<u>, KS</u>					
					:				
						 		\	
	-					 			
					· · · · · · · · · · · · · · · · · · ·				
		Meh	12/6/	Junely 195			Muche 41	eli/16	culy

77,72

REMEDIAL PLANNING ACTIVITIES AT SELECTED UNCONTROLLED HAZARDOUS SUBSTANCE DISPOSAL SITES IN THE ZONE OF REGIONS VI, VII, AND VIII

U. S. EPA CONTRACT NO. 68-W9-0032

FIELD SAMPLING PLAN

MOUND STREET PCB SITE ST. LOUIS, MISSOURI

Revision 1

Work Assignment No.: 37-7JZZ

March 4, 1996

Prepared for: U.S. Environmental Protection Agency

Prepared by: Sverdrup Corporation, Inc. 4400 College Boulevard, Suite 160 Overland Park, Kansas 66211

LEVEL BOOK

MOUND STREET PCB ST LOUIS, MO

CERCLIS 10 No. M00000093682

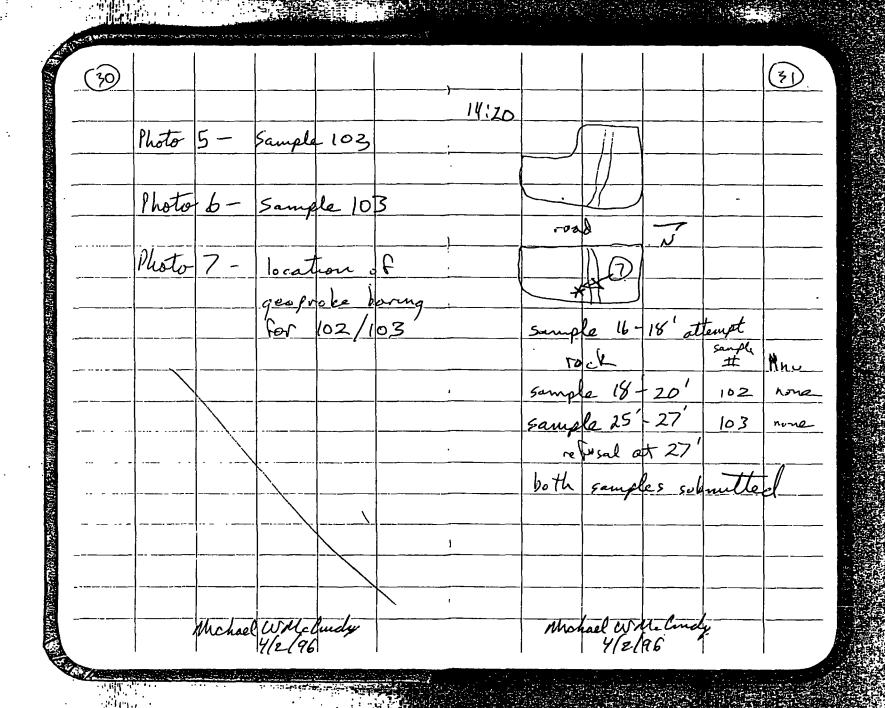
No. 8152-50

Site visit - cample collection April 1,1996 1100 leave SVE Overland Park KS 1600 RANGE ST COURS pick up iggingenent 2, 1996 leave Liverpant for site Mahael Will Cludy Mehael W Molindy 4/2/96

(7) 0730 M. May calibrate HuU M. M. Curly calibrate. FAE personnel on-site Scott Hayes Andy Mazzeo M. May - PCB (low flow)

K. S. hademann - metals (yellow) A. Mazzed VOC Michael WMclinds Metal work County

850 Ed E personnel we 29.851 be operating 7 3,25 M. May to log M. May 8 M. M. Curdy 415 Geopre 22 setup collect samples Photo 1 - Piche Point 1 Npex Site


(20) 430 hole backfilled with grout not enough water to collect 955 te Mishael Will Candy Mohael WMc Cudy

我们的事情心的意思是有关的人就会自己的意思是是这些的意思,就是这些人,但他们就是这个一个是我们的人们的不是不是不 1005 Photo 2 - Sample 10 Knu , le at 17-19 101 ilone Michael WMcCondy Michael WMc Guds

Photo 3 - abandoned no sample collected refral at 14' refusel at "1" refugal at 1/ refugal at 16' refusal at 14' attempt cample 10-12 Sample_collected 2-3" in simple collected Michael W Mc Cinch Michael WMolindy

1215 Photo 4- abandoned are rock & debris refusal at 15' Macks, gravel 26" sample ietneval site Michael WMa Condy

1307 pock trucks for Lunch 1330 leave for lunch Message with Dave Crawfood at EPA* * X Stated only one sample was collected at the hormer 14:10 arrive site building location, We were califrate sampling pumps going to more to the vacant area between the Flood well a site to collect the * Stated we had attempted remaining samples, legrested sample collection at the Dave leane a message on my voice mail at 663-2108, borner building location & were having difficulty collecting samples due to congrete, brick frock in the subsurface XX (grevious page) Michael WMo Lindy Michael WMa Cindy.

32											(33)
						1530					
						1					
	Photo	8-	sample	_100			- Posed			-	
-						· ·	× Ø				
	Photo	9-	locate	on of			**				
		ł	100 \$		J					Sompl	Hus
							Same	le :	5-27	100	non
				·			, ,	i	5-27	i	von
·- ·							7000		7 4 (
							1.0	+ -			 :
			\ <u> </u>				aidme	90	aeyone	(2/	 .
		· · · · · -									 -
	-										
			// .			1610	Equip	mont	rensate	<u> </u>	. .
				. \	ļ. <u></u>		From	docos	mad	Sauge	<u> </u>
							tobe	- afte	~ 100	soil	
							Sain	sle N	008 el wa 4/el	_	
		Miche	al WM	curdy			·	Micha	el wa	cloud	

ESE personnel leave site 1700 SVE personal leave site 1715 Message from Pove Crawford 1930 that there is not muc be in it reeded.

Metael Willalinde
Welge Michael W. Ho Cindy

April 3, 1996 peristatic pump work 0700 0830 Arrive site Sunny day, 70°F Michael W Mc Curdy

		<u>-:</u>								<i>,</i>	
(38)						· (. — — —					189
						840					
						<u> </u>					
	Photo	10 -	South	of si	te		4ï	te)		
							food		7		
	DL to	11 -	Sample	104		6			h		
	1 4010	(1	1	l .		-, -(10)	\ +.17	4		Sampl	Hau
	<u> </u>		locati	on_						Jampe	
	1 1						Samp	le 25	-27	104	No
	Photo	12-	Sample	104			 		<u> </u>		-
			ocate	on							
						, 930	Rand	y to	hotel	to p	ck
_								1	och po		
-						•			to ca		el
***		- 1					10	0 0	er an	J.	
•								ļ	er ar	2000	
<u></u>	<u> </u>				-		pon	P-			
	<u> </u>										
	ļ				ļ			ļ			
		 	1-,								
		Mich	4/5/9	Curoly			im	chael y	VMcC 5/96	noly	
				٠ م			1	' (/	7/ (0		

A second

 $\mathcal{A}_{i}(y)$ 1. 10 mil

(41) Water sample From 845 on truck - pump does not E&E pump to arrive this . 915 Field Blank 003 calibrate YSI retar Michael WAG Curch Michael WMc Ludy

(43) (42) 1010 Randy & Mike return with Photo 13 - Eguipment for well 1020 top of casing 29.32' cading hought 3/25' water level 26,07 bgg Photo 14- Sampling of north well depth 49.31 Nate: 46.06 605 · loyo the peristaltic 10.6192 0.948 6.84 sigell 6.98 0,850 1055 19.5 0,936 6,95 19,8 1106 TAT Engineering 19,9 0,935 6,98 1122 Model 410-460B pump rate 15 opproximptely 0.0 3 gpm Series A-93 whall whi andy 4/5/96

1128 South well top of casing 29.58 Ft Photo 15 - South well 601 M Photo 16 + South well approximately 1.4 gallons removed during parging North well Photo 17- looking toward north well slight petroleum odor Photo 18 - Looking toward South well Whohael W Mc Condy Michael Wal Cinda

(47) 1130 north well top of casing 28.43 Photo 13 - Pump & YST 24.68 water level bas setup at North \$1.02 well 3.75 7/1 well bottom 47.27 39' 1148 Note: pural 18.6 .963 6,75 clear, no 18.8 .958 6,80 peristaltic type pump 1203 19.7 .963 6.78 1214 Photo 14 - North well pumping rate is approx 0.06 gpm Mehael WMebridy 4/3/96 Michael WALclindy

.

1215 to north wel top of casing 28.54 sample begin 002 upprox. 1,4 gallons removed by purge 1245 sample youth well no visible suspended 310 matter or secliment slight patroleum odo 5 ampling 001/0010 Michael W McCin michael W Mc Centy

(51) leave site 1345 1445 arma Sut St Louis office -2000 g drop off equipment Photo 19 - Sampled area leave SVE St Lours Office 1515 Photo 20 - Sampled area Photo 21 - Sampled area arme SUA overland fork 2015 Photo 22 - Sampled area Flow & Mississippi River Photo 23 - MSSIESIPPI River Photo 24 - Water intake in IL Photo 25 - MISSIESUPPI River Michael W Mc Condy Mchael W Mclindy

April 4, 1996 10:30 Deliver samples to EPA at Function Rd in Kansas City, KS 11:30 Annue EPA Michael WMcandy Muchael Wille Cundy

DEPARTMENT OF THE ARMY ST. LOUIS DISTRICT. CORPS OF ENGINEERS 1222 SPRUCE STREET ST. LOUIS, MISSOURI 63103-2833 27 November 1995

ATTENTION OF:
Engineering Division
Geotechnical Branch

Reference 25

Mr. Mike May Sverdrup Environmental, Inc. 4400 College Blvd., Suite 160 Overland Park, KS 66211

RE: Request for monitoring well maps, analytical data, well installation data, Mound Street PCB site, St. Louis, MO; Sverdrup Project No. 010865-37303

Dear Mr. May:

As you requested, please find enclosed maps of the construction of the St. Louis Floodwall, Reach 3, which contains Mound Street PCB site.

Please note that there are no relief wells indicated parallel with your site, the nearest wells are located to the north of Mound Street. I have not been able to locate any additional relief well information for the site area. Also, please note that there are a few manholes parallel with your site. These might be mistaken for relief wells. I have enclosed construction details of these manholes.

The sponsor, St. Louis Metropolitan Sewer District, has maintenance responsibility for the relief wells and manholes along the floodwall.

If you require additional information of the St. Louis Floodwall, please call me at (314) 331-8444.

Catherine W. Fox Geology Section · Soil survey of

Reference 26

St. Louis County and St. Louis City, Missouri

United States Department of Agric Soil Conservation Service in cooperation with Missouri Agricultural Experiment S

U.S. Department of Commerce Economics and Statistics Administration BUREAU OF THE CENSUS 1990 CPH-1-27

CENSUS'90

1990 Census of Population and Housing Summary Population and Housing Characteristics

Missouri

Reference 27

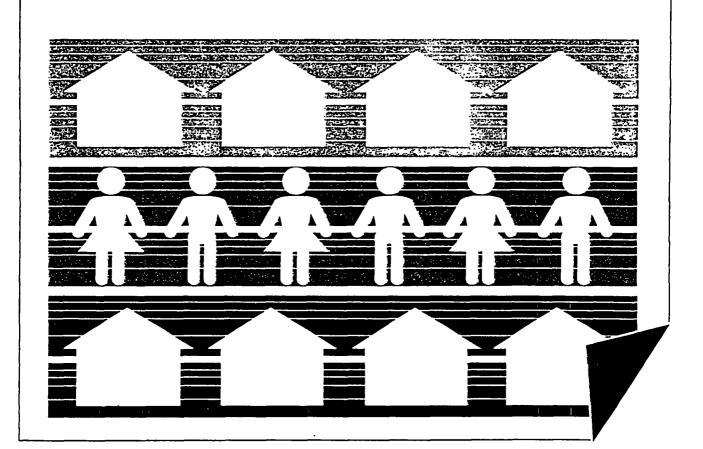
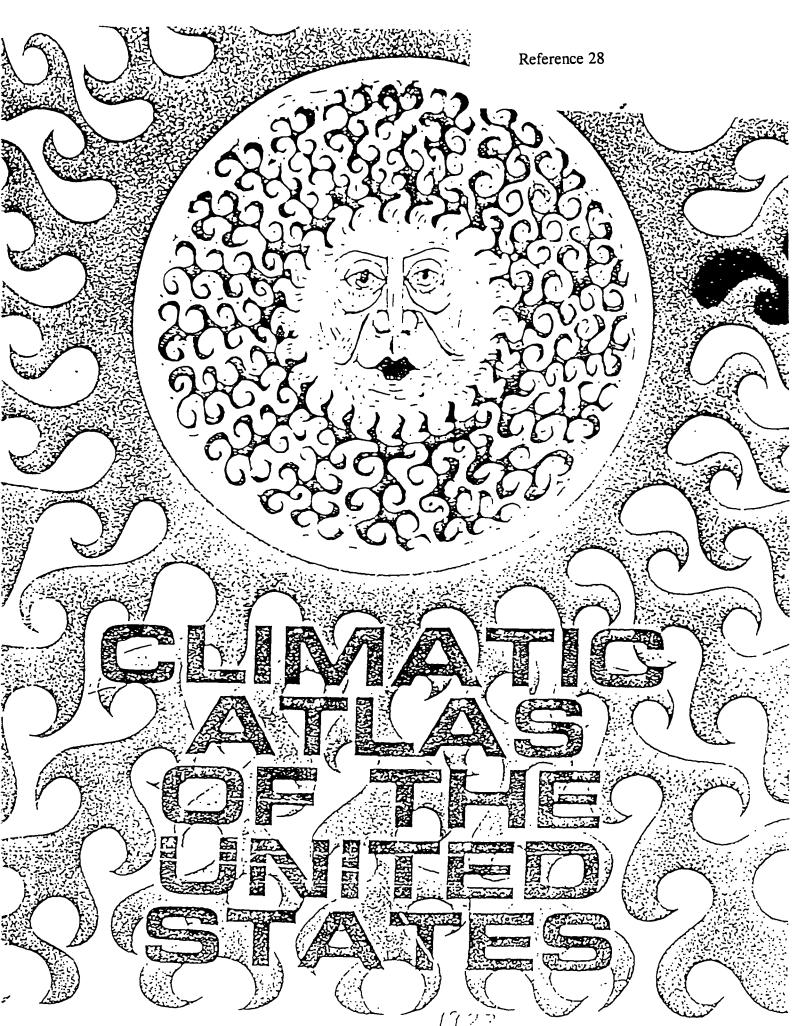


Table 5. Household, Family, and Group Quarters Characteristics: 1990—Con.


(For definitions	o f	terms	end	meanings	of	symbo	ols,	266	lexi]	ı
-------------------	-----	-------	-----	----------	----	-------	------	-----	-------	---

For detailings of ferris and			Fan	nly households	l .	Nonfamily households				Persons	per—	Persons in group quarters		
State							House	eholder living (pione		·			
County County Subdivision Place	Danier in	All bassa		Marned-	Female house- holder, no			65 years	and over				Institu-	Other per-
, lace	Persons in households	All house- holds	Total	couple family	husband present	Total	lctoT	Total	Female	Household	Family	Total	persons	quarters group
St Charles County—Can Zumbehl township ————————————————————————————————————	11 415 7 947 4	4 480 3 359 1	3 000 2 048	2 489 1 679 1	382 271	1 480 1 311	1 219 1 092	232 203 —	185 160 -	2.55 2.37 4.00	3 17 3.08 4 00	181 181 -	170 170	11 11 -
St. Clair CountyAppleton township	8 267 1 516	3 499 666	2 441 419	2 148 364	222 49	1 058 247	986 232	608 155	478 130	2.36 2.28	2.88 2.96	190 68	190 68	-
Appleton City City	1 212 1 249	562 547	331 363	281 306	44	231 184	218 167	147 114 93	124 93 79	2 16 2.28 2 11	2 89 1 2.81 2.75	68 96	68 96	-
Lowry City city Center township Chalk Level township	627 203 1 150	297 77 58	172 60	132 51 38	32 3 4	125 17 14	115 15 12	7 7	3	2 64 2 59	2.73 2.98 3.02	96	96 - -	-
Collins township	604 144	236 60	182 39	156 30	22	54 21	50 21	28 17	25 16	2 56 2 40	2.98 3.13	_	-	-
Dallas townshipGerster town	326 40	129 16	102 10	94 9	4	27 6	25 6	12	10 2	2.53 2.50	2 88 3.30	<u>-</u>	-	-
Dayal township	496 50	203 24	149 17	139 17	8 -	54	52 7	28	18 .3	2.44 2.08	2 94 2 53	_	-	Ξ
Jackson township	260 285	114 106	80 85	76 80	3	34 21	30 19	17	11 10	2.28 2.69	2 75 3 07	-	=	-
Osceola township	204 1 403	80 650	62 403	56 335	57 57	18 247 190	15 233 187	153 127	118 101	2 55 2.16 1.88	2 94 2 81 2.68	26 26	26 26	Ξ
Polit township	729 179	387 76 211	197 59 162	155 52 147	40 4 10	17 17	17	9 27	7 18	2 36 2.38	2.73 2.75	-	-	Ξ
Roscoe village	503 100 437	46 177	32 137	28 127	3 7	14 40	14 35	7	6	2 17 2.47	2.56 2.80	-	-	=
Speedwell township Taber township Washington township	212 240	78 91	59 75	56 71	ź	19	19 12	11 6	7 5	2.72 2.64	3.27 2.87	-	-	-
Ste Genevieve County	15 792	5 707	4 416	3 878	374	1 291	1 153	625	476	2 77	3.21	245	181	64 49
St. Mary city	1 723 412	600 174 936	465 111 747	405 80 672	39 20 50	135 63 189	119 58 166	69 34 85	50 25 60	2.87 2.37 2.81	3 35 3.02 3.19	49 49	=	49
Bloomsdale city Ste Genevieve township	2 629 353 8 524	142 3 154	102 2 375	92 2 064	230	40 779	39 707	28 392	23 317	2 49 2 70	3.04 3.19	183	181	2
Rocky Ridge village (pt.)	56 4 364	1 793	19	19 989	183	10 581	536	308	2 260	1 93 2.43	2.37 3.04	47	47	-
Saline township	887 2 029	311 706	252 577	230 507	14	59 129	54 107	30 49	19 30	2 85 2 87	3 21 3 18	13	-	13
Rocky Ridge village (pt)	306	127	93 13 101	63	6	34 4 569	26 4 084	2 225	1 809	2.59	2.76 3.04	- 3 179	- 2 832	347
Big River township	45 725 1 435 2 899	17 670 550 1 105	433 830	10 871 379 686	1 788 36 117	117 275	88 252	45 161	34 123	2 61 2 62	2 90 3.06	22	11	11
Iron township Bismarck city kan Mauntain take city	1 557 632	604 240	441 174	355 141	69 28	163	152 60	104 35	83 23	2.58 2.63	3 06 3 11	22	ii	ii
Liberty township	1 482 1 495	546 537	450 443	409 403	27 27	96 94	93 70	50 23	30 12	2 71 2 78	3.04 3.03	-	-	Ξ
Pendleton township	2 255 7 499	823 2 882	654 2 193	565 1 865	64 251	169 689	150 621	84 379	47 310	2.74 2.60	3.10 3.02	83 111	59 100	24 11
Bonne Terre city Flat River city (pt.)	3 819	1 474	1 037	819	180	437	405	264 -	228	2 59	3.17	52 59	41 59	11
Rendolph township	8 841	3 297	2 536	2 092	361	761	669	375	310	2.68	3.10	=	-	-
Deslage city (pt) Elvins city (pt)	3 714 1 137	1 461 417	1 074 324	881 262	155 56	387 93	340 1 85	185 49	153 39	2.54 2.73	3 01	=	-	Ξ
Flot River city (pt.)	32 1 247	13 448	12 358	282	62	90	84	52	45	2 46 2 78	2 58 3 17		-	-
St Francois township	62 19 819	7 930	20 5 562	4 472	905	2 368 29	2 141	1 108	943 7	2.58 2.50 2.55	2 80 3 03 2.95	2 963 105	2 662 105	301
Desloge city (pt) Etvins city (pt)	331 254 1 071	130 94 422	101 68 294	85 52 210	13 12 69	26 128	27 18 116	10 63	8 58	2.70 2.54	3 21 3 07	-	-	=
Formington city	8 927 4 717	3 749 1 871	2 522 1 286	2 079 961	378 278	1 227 585	1 136 530	610 297	522 258	2 38 2 52	2 98 3.08	2 671 15	2 557	114 15
Flat River city (pt) Leadington city Rivermines village (pt.)	201 345	90	60 90	44 71	15	30 30	29 24	10	10	2 23 2.88	2 73 3 31	52	-	52
it. Louis County	975 815	380 110	270 421	219 468	40 657	109 689	93 532	35 078	28 674	2.57	3 10	17 714	12 586	5 128
Airport township Bel-Ridge village (pt)	33 097 215	13 211	8 751 51	5 797 25	2 407 19	4 460	3 804	1 319	1 046	2.51 3.71	3 11 3 80	182	151	31
Breckenndge Hills village (pt)	10 213 701	3 596 281	2 701 203	1 608 110	910 83	895 78	769 55	247 13	190 7 23	2.84 2.49 1.81	3 31 2 84 2.52	27 -	16	11
Cool Valley city (pt.)	883 . 6	487 2	207 1 288	130	57 1	280 1 141	218 1 112	31 1 43	23 1 33	3.00 2.59	5 00 3.18	100	100	=
Edmundson village	1 111 2 451 11 525	429 788 5 213	208 554 3 044	167 2 237	. 65 348 628	234 2 169	216	123 632	92 508	3.11 2.21	3 89 2.89	55	35	20
St John city (pt.)	1 591 4 362	616	451 1 243	350 960	77 218	165	138	58 168	47	2 58 2 52	3.04 2.99	=	-	
Bonhomme township Des Peres city (pt.)	37 258 508	14 934 152	10 452 142	8 788 136	1 330 2	4 482	3 976	2 053	1 710	2 49 3 34	3 06 3 46	638	582	56 -
Fenton city (pt.)	3 290	1 103	955	849	74	148	128	47	32	2 98 I 00	3 23	56	56 -	-
Kirkwood citySappington CDP (pt)	27 002 572	11 212 184	7 583 170	6 355 159	987 8	3 629 14	3 205	1 572 5	1 320	2 4 I 3 1 I	3 00 3.20	289	239	50 -
Sunset Hills city (pt.)	4 207 33 996	1 744 13 708	1 188 9 848	1 062 8 601	100 968	556 3 860	514 3 400	367 1 499	313 1 223	2.41 2.48	3 01 2 99	132 891	126 735	6 156
Clayton aty (pt.)	7 776 1 666	3 987 601	1 945 513	1 571 480	290 21	2 042 88	1 741	622 28	523 22	1.95 2.77	2 75 3 03	304 309	304 218	91
Crystal Lake Park city Des Peres city (pt.)	506 4 676	209 1 671	158 1 412	139 1 278	18 108	51 259	43 229	22 121	20 91	2 42 2 80	2 82 3 09	102	102	-
Glendale city (pt.)	3 266 117	1 226	1 033 32	953 26	56 5	193 20	176 15	85 10	67 I	2 66 2 25	2 94 2 81	108	70 -	38 -
Huntleigh city	392 6 990	2 651	118 2 166	1 <i>09</i> 1 987	136	485	452	10 249	209	2.97 2.64	3 16 2 97	-	-	-
Rock Hill city (pt)	4 260 1 548	1 606	1 167 440	901 415	205	439 75	406 72	190 46	150 28	2 65 3 01	3 21	68	41	27
Webster Groves city (pt)	2 049 433	773 154	646 114	592 52	47 56 2	127 40	120 36	86 22	72 17	2 65 2 81	2 96 3 36	-	-	-
Westwood village	309	129	103	97	2	26	22	5	7 1	2 40	2 66 1	-	-	-

Table 5. Household, Family, and Group Quarters Characteristics: 1990—Con.

[for definitions of terms and meanings of symbols see text]

			form	uly household	5		Nonfamily	households		Persons	per —	Persons in group quarters		
State County							House	eholder living o	lone					
County Subdivision			Married-	Female house-			65 years and over					institu-	Other per-	
Place	Persons in households	All house- holds	Total	couple family	couple husband	Total	Total	Total	Female	Household	Family	Total	1ionalized persons	group quarters
Worth County — Cor.														
Middlefork township	229	89	66	59	5	23	18	13	13	2 57	3 03	-	_	-
Worth town	103	37	27	24	2	10	7	5	5	2 78	3 33	_	-	_
Smith township	183	81	57	50	6	24	22	14	7	2 26	2.70	-	-	~
Allendale town	58	32	16	14	2	16	15	11	5	1.81	2 44	_	-	-
Union Township	485	215	146	131	7	69	65	46	37	2 26	2.80	-	-	_
Sheridan town	174	91	49	44	4	42	42	34	28	1,91	2 67	-	-	-
Vright County	16 558	6 510	4 725	4 059	518	1 785	1 679	998	780	2 54	3 06	200	199	1
Boone township	893	321	255	227	21	66	58	26	21	2.78	3.20	-	-	-
Brysh Creek township	510	177	143	127	12	34	32	13	10	2 88	3 26	_	_	-
Clark township	1 061	400	310	261	34	90	86	56	44	2 65	3 09	_	_	_
Norwood city (pt)	389	151	106	86	18	45	43	30	26	2 58	3 19	-	_	-
Elk Creek township	382	155	122	106	9	33	29	14	11	2 46	2.80	_	-	_
Gasconade township	1 051	381	292	256	26	89	81	46	32	2 76	3 22	-	_	_
Hartville city (pt)	108	48	29	23	5	19	17	12	9 ;	2 25	3 00	_	_	_
Hart township	1 061	452	292	256	28	160	154	111	87	2 35	3 03	7	7	_
Hartville city (pt.)	380	206	93	70	18	113	112	86	68	184	2 83	7	7	-
Montgomery Township	533	189	154	134	15	35	34	16	12	2.82	3 14	_	-	_
Mountain Grove township	5 569	2 382	1 575	1 292	236	807	767	466	376	2.34	2 95	129	129	_
Mountain Grove city (pt)	4 141	1 860	1 158	916	208	702	667	416	341	2 23	2 89	27	27	_
Norwood city (pt)	60	26	17	15	1	9	9	4	3	2.31	3.00	-	_	_
Pleasant Valley township	2 638	1 011	730	619	94	281	258	156	120	2 61	3 15	64	63	1
Mansfield city	1 428	587	376	298	70	211	194	125	103	2.43	3 14	1	_	1
Union Iownship	i 045	393	314	285	19	79	77	46	36	2.66	3 04	-	-	-
Van Buren township	550	194	154	144	5	40	37	16	12	2 84	3 25	-	-	-
Wood township	1 265	455	384	352	19	71	66	32	19	2 78	3 03	_	_	_
Mountain Grove city (pt)	7	1	1	1	-	<u>_</u>	-	_	-	7 00	700	-	-	_
t Louis city	385 916	164 931	90 945	50 557	33 864	73 986	64 677	26 519	20 788	2.34	3.21	10 769	5 900	4 869

ntal Science Services Administration Environmental Data C

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 7 25 FUNSTON ROAD KANSAS CITY, KANSAS 66115

Sverdrup Environmental, Inc.

DATE:

SUBJECT:

Data Transmittal for Activi

Site Description:

FROM:

Andrea Jirka, Program Manager 🗡

Regional Laboratory, Environmental

TO:

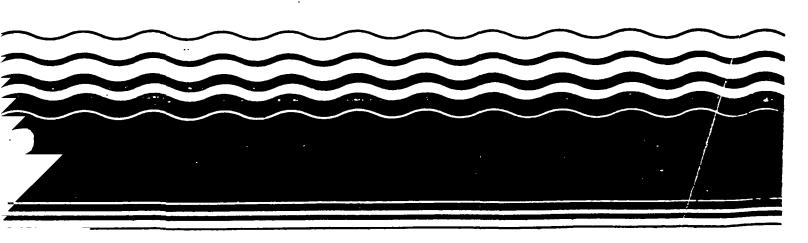
Attached is the data transmittal for the above-referenced The data contained in this transmittal have been approved by the Regional Laboratory. This should be considered a Complete data transmittal (completes Partial or transmittal of The Project Leader should notify). the Regional Laboratory with 14 days of any changes in the LAST analytical database. If you have any questions, comments, or data changes, please contact Dee Simmons at 551-5129. Attachment

Analytical Data File cc:

Office of Emergency and Remedial Response Washington DC 20460

EPA 540-R-92-021 Directive 9345.1-05 September 1992

Superfund


Guidance for Performing Site Inspections Under CERCLA Reference 30

includes revised

C-33

C-94

Interim Final

United States Environmental Protection Agency

Supertuna

Office of Emergency and Remedial Response Washington, DC 20460 Publication September 1995

SFPA

Superfund Chemical Data Matrix

Reference 31

EPA540-R-92-026
OSWER Directive 9346450752November 1992-

Reference 32

The Hazard Ranking System Guidance Manual

Interim Final

Hazardous Site Evaluation Division
Office of Solid Waste and Emergency-Response
U.S. Environmental Protection Agency
Washington, DC 20460

Friday December 14, 1990

Reference 34

Environmental Protection Agency

40 CFR Part 300 Hazard Ranking System; Final Rule

